删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

香港城市大学神经科学系老师教师导师介绍简介-Dr. Eddie Chi Him Ma (马智谦博士)

本站小编 Free考研考试/2022-01-30

Dr. Eddie Chi Him Ma (马智谦博士) DPhil (Oxford)

Associate Head, Department of Neuroscience
Associate Professor, Department of Neuroscience
Director, Laboratory Animal Research Unit (LARU)

Office: 1B-107, 1/F, Block 1, To Yuen Building
Phone: +852 3442-9328
Fax: +852 3442-0549
Email: eddiema@cityu.edu.hk
Web: CityU Scholars


Dr Eddie Ma obtained his BSc from The Hong Kong University of Science and Technology (1997) and his M.Phil. from The University of Hong Kong (2000). In 2005, he obtained his DPhil from the University of Oxford. He then moved to the United States for postdoctoral training at the Childrens Hospital Boston and Harvard Medical School with Professor Clifford Woolf before joining the City University of Hong Kong in 2011. He was a recipient of the Sir Edward Youde Memorial Fellowship at The University of Hong Kong (1997–1999), a Croucher Foundation Scholarship at the University of Oxford (2001–2004) and a fellowship at Harvard University (2005–2007).
Research Interest and Projects The central nervous system fails to regenerate whilst peripheral nervous system is able to regrow after injury provided injured axons are aligned with their former pathways and close to their targets. However, proximal nerve lesions (i.e. Human brachial plexus Injury), which require long distance axonal regeneration as well as those that involve complete transection of the nerves, generally have poor outcomes with minimal clinically motor recovery. Successful regeneration depends on both extrinsic cues in the environment and the activation of intrinsic growth capacity to promote regrowth. Recent reports have shown that removal of extracellular inhibitory cues is not sufficient to promote successful regeneration.
Dr Ma’s lab focuses mainly on understanding the intrinsic molecular machinery necessary for central and peripheral nervous system regeneration after injury using a multidisciplinary approach spanning cell biology, molecular biology, anatomy, animal behavior and genetics. They examine the growth capacity of injured neurons and functional recovery using in vitro cell culture and in vivo animal model respectively. Their ultimate goal is to develop new strategy to promote axonal regeneration after injury, and to improve our understanding and treatment of neurodegenerative diseases.
News5 May 2021Dr Ma and his research team was featured in the Research Story of CityU.
https://www.cityu.edu.hk/research/stories/2021/05/05/novel-neural-prosthetic-devices-neurodegenerative-diseases
24 March 2021Congratulations to Dr Ma and Dr Kumar for being awarded the Silver Medal at the Inventions Geneva Evaluation Days (IGED) 2021, a virtual edition of the International Exhibition of Inventions of Geneva.
Project entitled: "Neural Motor prosthesis Prototype for the Restoration of Motor Function in Spinocerebellar Ataxia by closed-loop deep brain stimulation".

Video link:
https://drive.google.com/file/d/1uXk84ALnySa5__pWxoivkDF7_zBOllEc/view?usp=sharing
https://www.cityu.edu.hk/media/press-release/2021/03/24/cityu-wins-6-golds-invention-geneva-evaluation-days
https://www.cityu.edu.hk/cityutoday/en/ct-67/major-wins-geneva-inventions-exhibition
https://www.news.gov.hk/eng/2021/05/20210517/20210517_184516_015.html
Selected Publications (*Corresponding Author) P. Asthana, G. Zhang, K.A. Sheikh, C.H. Ma*. (2020) Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain, Behavior, and Immunity. 91: 48-64.
V. B. Chine, N.P. Au, C.H. Ma*. (2019) Therapeutic benefits of maintaining mitochondrial integrity and calcium homeostasis by forced expression of Hsp27 in chemotherapy-induced peripheral neuropathy. Neurobiology of Disease 130: 104492.
V. B. Chine, N.P. Au, G. Kumar, C.H. Ma*. (2019) Targeting axon integrity to prevent chemotherapy-induced peripheral neuropathy. Molecular Neurobiology 56: 3244-325.
H. Chen, K.S. Cho, T.H. Khanh Vu, C.H. Shen, M. Kaur, G. Chen, R. Mathew, M.L. McHam, A. Fazelat, K. Lashkari, N.P. Au, K.Y. Tse, Y. Li, H. Yu, L. Yang, J. Stein-Streilein, C.H. Ma, C.J. Woolf, M.T. Whary, M.J. Jager, J.G. Fox, J. Chen, D.F. Chen. (2018) Commensal Microflora-induced T Cell Responses Mediate Progressive Neurodegeneration in Glaucoma. Nature Communications 9:3209.
Featured in Science Daily entitled “Glaucoma may be an autoimmune disease” (10 Aug 2018).
Featured in GEN News Highlights entitled “Could Glaucoma Be an Autoimmune Disease?” (10 Aug 2018).
Featured in Reliawire entitled “The Body’s Own Immune System Destroys Retinal Cells” (13 Aug 2018).
P. Asthana, N. Zhang, G. Kumar, V. B. Chine, K. K. Singh, Y. L. Mak, L. L. Chan, P. K. S. Lam, C.H. Ma*. (2018) Pacific ciguatoxin induces excitotoxicity and neurodegeneration in the motor cortex via caspase 3 activation: Implication for irreversible motor deficit. Molecular Neurobiology 55: 6769-6787.
E. J. Cobos, C. Nickerson, F. Gao, V. Chandran, I. Bravo-Caparrós, R. González-Cano, P. Riva, N. Andrews, A. Latremoliere, C. Seehus, G. Perazzoli, F. R. Nieto, N. Joller, M. Painter, C. H. Ma, T. Omura, E. J. Chesler, D. H. Geschwind, G. Coppola, M. Rangachari, C. J. Woolf, M. Costigan. (2018) Mechanistic differences in neuropathic pain modalities revealed by correlating behavior with global expression profiling. Cell Reports 22:1301-1312.
N.P. Au and C.H. Ma*. (2017) Recent advances in the study of bipolar/rod-shaped microglia and their roles in neurodegeneration. Frontier in Aging Neuroscience 9: 128.
G. Kumar#, N.P. Au#, E. N. Y. Lei, L. Mak, L. L. H. Chan, M. H. W. Lam, L. L. Chan, P. K. S. Lam, C.H. Ma*. (2017) Acute exposure to Pacific ciguatoxin reduces electroencephalogram activity and disrupts neurotransmitter metabolic pathways in motor cortex. Molecular Neurobiology 54: 5590-5603.
(#G.K. and N.P.A. contributed equally).
W.Y. Tam#, N.P. Au#, C. H. Ma*. (2016) The association between laminin and microglial morphology in vitro. Scientific Reports 6: 28580.
(#W.Y.T. and N.P.A. contributed equally).
N.P. Au, G. Kumar, P. Asthana, C. Tin, Y. L. Mak, L. L. Chan, P. K. S. Lam, C. H. Ma*. (2016) Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury. Scientific Reports 6: 26809.
P. Asthana, J.S.L. Vong, G. Kumar, R.C.C. Chang, G. Zhang, K.A. Sheikh, C.H. Ma*. (2015) Dissecting the role of anti-gangliosides antibodies in Guillain-Barré syndrome: an animal model approach. Molecular Neurobiology 53:4981-91.
(Featured as Front Cover Story).
W.Y. Tam and C. H. Ma*. (2014) Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes. Scientific Reports 4: 7279.
N.P. Bennett Au, Y. Fang, N. Xi, K.W. Lai*, C.H. Ma*. (2014) Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neuron with atomic force microscopy. Nanomedicine: Nanotechnology, Biology, and Medicine 10: 1323-33.
J. Wang, B.T. Lang, A. Nord, S.A. Busch, N.P. Bennett Au, C.H. Ma, Y. Shen. (2014) Pleiotropic Molecules in Axon Regeneration and Neuroinflammation. Experimental Neurology 258: 17-23.
Y.M. Ho#, N.P. Bennett Au#, K.L. Wong, C.T.L. Chan, W.M. Kwok, G.L. Law, K.K. Tang, W.Y. Wong, C.H. Ma*, M.H.W. Lam*. (2014) A Lysosome-Specific Two-Photon Phosphorescent Binuclear Cyclometalated Platinum(II) Probe for In Vivo Imaging of Live Neuron. Chemical Communications 50: 4161-4163.
(Featured as Front Cover Story).
(#Y.M.H. and N.P.B.A. contributed equally)

L. Korngut, C.H. Ma, J.A. Martinez, C.C. Toth, G.F. Guo1, V. Singh, C.J. Woolf, D.W. Zochodne. (2012) Overexpression of human heat shock protein 27 protein protects sensory neurons from peripheral diabetic neuropathy in mice. Neurobiology of Disease 47: 436-43.
C.H. Ma, G.J. Brenner, T. Omura, O.A. Samad, M. Costigan, P. Inquimbert, V. Niederkofler, R. Salie, H.Y. Lin, S. Arber, G. Coppola, C.J. Woolf, and T.A. Samad. (2011) The BMP co-receptor RGMb promotes while the endogenous BMP antagonist Noggin reduces neurite outgrowth and peripheral nerve regeneration by modulating BMP signaling. Journal of Neuroscience 31: 18391-18400.
C.H. Ma*, T. Omura, E.J. Cobos, A. Latrémolière, N. Ghasemlou, G.J. Brenner, Ed van Veen, L.B. Barrett, T. Sawada, F. Gao, G. Coppola, F. Gertler, M. Costigan, D. Geschwind, C.J. Woolf*. (2011) Accelerating axonal growth produces motor recovery after peripheral nerve injury in mice. Journal of Clinical Investigation 121: 4332-4347.
Featured in Journal of Clinical Investigation Commentary (2011) “A (heat) shock to the system promotes peripheral nerve regeneration.” Journal of Clinical Investigation 121: 4231-4234.
Featured in Children’s Hospital Boston’s Science and Clinical Innovation Blog entitled “Questioning “wait and see” in motor nerve injuries” (5 Oct 2011).
http://vectorblog.org/2011/10/questioning-wait-and-see-in-motor-nerve-injuries/
Featured in United States PR Newswire entitled “In reversing motor nerve damage, time is of the essence” (3 Oct 2011).
http://www.prnewswire.com/news-releases/in-reversing-motor-nerve-damage-time-is-of-the-essence-130979918.html
Featured in Journal of Clinical Investigation press release entitled “Race to nerve regeneration: faster is better.” (3 Oct 2011).
http://www.eurekalert.org/pub_releases/2011-10/joci-rtn092911.php
Featured in Journal of Clinical Investigation Scientific Show Stoppers (3 Oct 2011).
C.H. Ma*, E.T.W. Bampton, M.J. Evans, J.S.H. Taylor. (2010) Synergistic effects of osteonectin and brain-derived neurotrophic factor on axotomized retinal ganglion cells neurite outgrowth via the mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 pathways. Neuroscience 165: 463-474.
C.H. Ma* and J.S.H. Taylor. (2010) Trophic responsiveness of purified postnatal and adult rat retinal ganglion cells. Cell and Tissue Research 339: 297-310.
C.H. Ma*, A. Palmer and J.S.H. Taylor. (2009) Synergistic effects of osteonectin and NGF in promoting survival and neurite outgrowth of superior cervical ganglion neurons. Brain Research 1289: 1-13.
R.S. Griffin, M. Costigan, G.J. Brenner, C.H. Ma, J. Scholz, A. Moss, A.J. Allchorne, G.L. Stahl and C.J. Woolf. (2007) Complement induction in spinal cord microglia results in anaphylatoxin C5a mediated pain hypersensitivity. Journal of Neuroscience 27: 8699-8708.
E.T.W. Bampton, C.H. Ma, A.M. Tolkovsky and J.S.H. Taylor. (2005) Osteonectin is a Schwann cell-secreted factor that promotes retinal ganglion cell survival and process outgrowth. European Journal of Neuroscience 21: 2611-2623.
R.C.C. Chang, K.C. Suen, C.H. Ma, W. Elyaman, H.K. Ng, J. Hugon. (2002) Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. Journal of Neurochemistry 83: 1215-1225.






相关话题/博士 香港城市大学 神经科