删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

湘潭大学数学与计算科学学院导师教师师资介绍简介-文立平

本站小编 Free考研考试/2021-08-20



基本信息

姓名: 文立平
职称: 教授
电子信箱: lpwen@xtu.edu.cn

个人简介

1962年11月生,湖南宁乡人,教授,理学博士,博士生导师。

研究方向

刚性泛函微分方程数值解法
科研项目


近年来主持和参加科研项目情况
[1] 国家自然科学基金(**),Volterra泛函微分方程多步Runge-Kutta方法的数值分析及应用,主持,2014.1-2017.12.
[2] 湖南省高等学校科学研究重点项目(09A093),非线性Volterra泛函微分方程数值方法的稳定性和散逸性分析,主持,2009-2012
[3] 湖南省自然科学基金(08JJ6002), 泛函微分动力系统数值方法的散逸性分析及应用,主持,2008.7-2010.12
[4] 湖南省教育厅一般项目(01C058),几类泛涵微分方程的数值方法及应用, 主持,2001.1-2003.12
[5] 国家自然科学基金(**), 时滞与振荡奇异摄动初值问题的数值分析及高效算法,2009.1-20012.12,第二
[6] 国家自然科学基金(**), 复合刚性泛函微分方程高效分裂算法及其理论,第二,50万元,2011.1-2014.12,已结题。
[7] 国家自然科学基金(**), 奇异摄动初值问题数值方法理论及高效算法,第三,2006.1-2008.12
[8] 国家自然科学基金(**), 刚性泛函微分方程数值方法的B-理论及其应用,第四,2003.1-2005.12
[9] 国家863课题,辐射流体力学方程组的高效数值方法、并行算法及程序实现,第五,2001.1-2005.12
[10]国家自然科学基金(**),刚性泛函微分方程数值分析及高效算法,第五,2009.1-2011.12
[11] 国家自然科学基金(**), 非线性刚性延迟微分方程算法理论及高效并行算法,第六,1999.1-2001.12
[12] 湖南省教育厅青年项目(07B072),非线性中立型延迟积分微分方程数值方法稳定性分析,第二,2007.1-2009.12
[13] 省教育厅青年项目,时滞偏差分方程的定性理论及其应用,第三,2001.1-2003.12
[14] 湖南省自然科学基金,刚性问题数值方法的定量收敛分析及高效保结构算法,第四,2004.1-2005.12
[15] 湖南省教育厅划块项目,非线性中立型延迟微分方程算法理论及应用,第二,2003.10-2005.12
[16] 湖南省教育厅划块项目,非线性微分代数方程算法理论及高效保真算法,第四,1999.1-2001.12
[17] 湖南省教育厅划块项目,非线性刚性变延迟微分方程数值方法的理论及应用,第四,2002.1-2004.12
[18] 省自然科学基金,非线性时滞差分系统的定性理论,第二,2003.1-2004.12
[19] 湖南省教育厅青年项目,刚性微分方程数值方法的定量收敛分析及应用,第三,2002.7-2004.12

论文专著

近年来发表的主要论文
2019年
[1] Zhiyong Xing Liping Wen, Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations,Applied Mathematics and Computation, Volume 346, 1 April 2019, Pages 155-166,
2018年
[1]文立平、杨春花、文海洋,非线性泛函积分微分方程多步Runge-Kutta方法的稳定性和渐近稳定性,湘潭大学学报自然科版,2018,(1):1~5.
[2] Zhiyong Xing,Liping Wen,A conservative difference scheme for the Riesz space-fractional sine-Gordon equation,Advances in Difference Equations,(2018) 2018: 238,https:// doi.org /10. 1186 /s13662-018-1689-5
[3] Haiyang Wen, Shi Shu, Liping Wen, A new generalization of Halanay-type inequality and its applications, Journal of Inequalities and Applications, (2018)2018:300, https://doi.org/10.1186/ s13660-018-1894-5
2017年
[1] Liping Wen, Yan Zhou, Convergence of one-leg methods for neutral delay integro- differential equations, Journal of Computational and Applied Mathematics 317 (2017) 432–446.
[2] Liping Wen, Qing Liao, Dissipativity of one-leg methods for a class of nonlinear functional-integro-differential equations, Journal of Computational and Applied Mathematics, 318 (2017) 26-37.
[3] Xuenian Cao, Xianxian Cao, Liping Wen, The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term, Journal of Computational and Applied Mathematics 318 (2017) 199-210.
[4] Suxia Wang, Liping Wen, Numerical dissipativity of neutral integro-differential equations with delay, INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 94 (2017), NO. 3, 536–553, http://dx.doi.org/10.1080/**.2015.**
[5]Qing Liao , Liping Wen, Dissipativity of Runge-Kutta methods for a class of nonlinear functional-integrodifferential equations, Advances in Difference Equations (2017) 2017:142, DOI :10.1186/s13662-017-1196-0
[6]余越昕,肖荣,文立平,Banach空间非线性脉冲微分方程的稳定性分析,湘潭大学自然科学学报,39(1)(2017)1:4.
2016年
[1] Liping Wen, Yuexin Yu, Convergence of Runge–Kutta methods for neutral delay integro-differential equations, Applied Mathematics and Computation 282 (2016) 84–96 .
2015年
[1] Yuexin Yu and Liping Wen, Stability Analysis of One-Leg Methods for Nonlinear Neutral Delay Integro-differential Equations, Discrete Dynamics in Nature and Society,Volume 2015, Article ID 325364, 9 pages, http://dx.doi.org/10.1155/2015/325364.
[2] Liping Wen, Xiong Liu, and Yuexin Yu, “Stability of Runge-Kutta Methods for Neutral Delay Differential Equations,” Discrete Dynamics in Nature and Society, vol. 2015, Article ID 127027, 8 pages, 2015. doi:10.1155/2015/127027.
2014年
[1] Yuexin Yu, Zhongyan Liu, and Liping Wen, “Stability Analysis of Runge-Kutta Methods for Nonlinear Functional Differential and Functional Equations,” Journal of Applied Mathematics, vol. 2014, Article ID 607827, 9 pages, 2014. doi:10.1155/2014/607827
2013年
[1] Guanghua He, Liping Wen, Dissipativity of θ-Methods and One-Leg Methods for Nonlinear Neutral Delay Integro-Differential Equations, WSEAS Transactions on Mathematics, Issue 4, Volume 12, April 2013.405-415.
[2] Liping Wen, Xiaolin Tang, Numerical Solving Two-dimensional Variable-Order Fractional Advection-dispersion Equation, WSEAS Transactions on Mathematics, Issue 11, Volume 12, November 2013, 1097-1103.
2012年
[1] Chao Ye, Xian-nan Luo, Li-ping Wen, High-order numerical methods of fractional-order Stokes’ first problem for heated generalized second grade fluid, Applied Mathematics and Mechanics,Volume 33, Number 1 / January 2012 , 65-80 (SCI)
[2] Liping Wen, Xiong Liu, Numerical stability of one-leg methods for neutral delay differential equations, BIT Numerical Mathematics: Volume 52, Issue 1 (2012), Page 251-269(SCI)
[3]王炳涛,文立平,Volterra泛函微分方程一般线性方法的稳定性[J].计算数学, 2012, 34(3): 225-234. (CSCD)
2011年
[1] Liping Wen, Yuexin Yu, Shoufu Li, Dissipativity of Runge-Kutta methods for Volterra functional differential equations, Applied Numerical Mathematics, Volume 61, Issue 3, March 2011, Pages 368-381(SCI)
[2] Liping Wen, Yuexin Yu, The analytic and numerical stability of stiff impulsive differential equations in Banach space, Applied Mathematics Letters, Volume 24, Issue 10, October 2011, Pages 1751-1757(SCI)
[3]Hong Su, Shui-Ping Yang, Li-Ping Wen, Stability and convergence of the two parameter cubic spline collocation method for delay differential equations, Computers and Mathematics with Applications, Computers & Mathematics with Applications, Volume 62, Issue 6, September 2011, Pages 2580-2590(SCI)
[4]叶超,骆先南,文立平,分数阶扩散方程的一种新的高阶数值方法[J].湘潭大学学报自然科版, 2011,(4):16-20。
[5]彭文婷,文立平,分数阶扩散-波动方程数值求解, 福州大学学报 (自然科学版), 2011年,39卷第4期:508-511。
2010年
[1] Liping Wen, Wansheng Wang, Yuexin Yu, Dissipativity and asymptotic stability of nonlinear neutral delay-integro-differential equations, Nonlinear Analysis: Theory, Methods & Applications, Volume 72, Issues 3-4, 1 February 2010, Pages 1746-1754.(SCI)
[2] Wansheng Wang, Liping Wen, Shoufu Li, Stability of linear multistep methods for nonlinear neutral delay differential equations in Banach space, Journal of Computational and Applied Mathematics, Volume 233, Issue 10, 15 March 2010, Pages 2423-2437.(SCI)
[3] Xueyong Liu, Liping Wen, Dissipativity of one-leg methods for neutral delay integro- differential equations, Journal of Computational and Applied Mathematics, Volume 235, Issue 1, 1 November 2010, Pages 165-173 (SCI)
[4] Yuexin Yu, Liping Wen, Stability analysis of one-leg methods for nonlinear functional differential and functional equations,Journal of Computational and Applied Mathematics, Volume 235, Issue 3, 1 December 2010, Pages 817-824.(SCI)

2009年
[1] Liping Wen, Yuexin Yu, Shoufu Li, Stability and asymptotic stability of θ-methods for nonlinear stiff Volterra functional differential equations in Banach spaces, Journal of Computational and Applied Mathematics, Volume 230, Issue 2, 15 August 2009, Pages 351-359. (SCI)
[2] Liping Wen, Suxia Wang, Yuexin Yu , Dissipativity of Runge-Kutta methods for neutral delay integro-differential equations, Applied Mathematics and Computation, Volume 215, Issue 2, 15 September 2009, Pages 583-590(SCI)
[3]余越昕,文立平,非线性中立型延迟积分微分方程单支方法的稳定性分析,应用数学,22 (2)( 2009),291-296.(CSCD)
[4]余越昕,文立平.非线性中立型延迟积分微分方程线性-方法的渐近稳定性,数值计算与计算机应用, 30 (4)(2009), 241-246 (CSCD)
2008年
[1] Liping Wen, Yuexin Yu, Wansheng Wang, Generalized Halanay inequalities for dissipativity of Volterra functional differential equations, Journal of Mathematical Analysis and Applications,Volume 347, Issue 1,1 November 2008, Pages 169-178.(SCI)
[2] Liping Wen, Wansheng Wang, Yuexin Yu, Dissipativity of θ-methods for a class of nonlinear neutral delay differential equations, Applied Mathematics and Computation,Volume 202, Issue 2, 15 August 2008, Pages 780-786 .(SCI)
[3] Liping Wen, Wansheng Wang, Yuexin Yu, Shoufu Li, Nonlinear stability and asymptotic stability of implicit Euler method for stiff Volterra functional differential equations in Banach spaces, Applied Mathematics and Computation,Volume 198, Issue 2,1 May 2008, Pages 582-591(SCI)
[4] Wansheng Wang, Liping Wen, Shoufu Li, Nonlinear stability of θ-methods for neutral differential equations in Banach space, Applied Mathematics and Computation,Volume 198, Issue 2, 1 May 2008, Pages 742-753.(SCI)
[5] Wansheng Wang, Liping Wen, Shoufu Li, Nonlinear stability of explicit and diagonally implicit Runge-Kutta methods for neutral delay differential equations in Banach space, Applied Mathematics and Computation,Volume 199, Issue 2,1 June 2008, Pages 787-803.(SCI)
[6]余越昕;文立平;李寿佛,延迟积分微分方程单支方法的稳定性分析,工程数学学报25(3)(2008), 469-474 (CSCD)


2007年
[1] Yuexin Yu, Liping Wen, Shoufu Li, Nonlinear stability of Runge-Kutta methods for neutral delay integro-differential equations, Applied Mathematics and Computation,Volume 191, Issue 2,15 August 2007, Pages 543-549.(SCI)
[2] Yuexin Yu, Liping Wen, Shoufu Li, Stability analysis of general linear methods for nonlinear neutral delay differential equations, Applied Mathematics and Computation,Volume 187, Issue 2,15 April 2007, Pages 1389-1398.(SCI)
[3]文立平,王炳涛,王素霞,Volterra泛函微分方程Runge-Kutta方法的稳定性,湘潭大学自然科学学报, 29(4)(2007), 1-5.
[4]王素霞,王炳涛,文立平,多延迟微分方程Runge-Kutta方法的散逸性,吉首大学自然科学学报, 28(4)(2007), 20-23.
[5]刘学泳,文立平, Volterra泛函微分方程单支θ-方法的散逸性,湖南农业大学学报(自然科学版), 33 (4) (2007), 489-491
[6]刘学泳;文立平, Volterra泛函微分方程二阶BDF方法的散逸性, 邵阳学院学报(自然科学版), (2) (2007), 8-10
2006年
[1] Wen Liping, Li Shoufu, Dissipativity of Volterra Functional Differential Equations,Journal of Mathematical Analysis and Applications, Volume 324, Issue 1, 1 December 2006, Pages 696-706(SCI)
[2] Wen Liping, Yu Yuexin, Li Shoufu, The Test Problem Class of Volterra Functional Differential Equations in Banach Space. Applied Mathematics and Computation, Volume 179, Issue 1, 1 August 2006, Pages 30-38 (SCI).
[3] Wen Liping, Yu Yuexin, Li Shoufu, Stability of Explicit and Diagonal Implicit Runge-Kutta Methods for Nonlinear Volterra Functional Differential Equations in Banach Spaces. Applied Mathematics and Computation, Volume 183, Issue 1, 1 December 2006, Pages 68-78,(SCI)
[4]文立平,余越昕,李寿佛,一类求解分片延迟微分方程的线性多步法的散逸性.计算数学. 28(1) (2006) 67-74. (CSCD)
[5]余越昕,文立平,李寿佛,非线性中立型延迟微分方程线性theta-方法的渐近稳定性,高等学校计算数学学报,28(2)(2006),103-110 (CSCD)
[6]余越昕,文立平,李寿佛.非线性中立型延迟微分方程单支方法的稳定性.计算数学, 2006,28(4):357-364 (CSCD)
2005年
[1] Wen Liping, Li Shoufu, Nonlinear stability of Linear Multistep Methods for Stiff Delay Differential Equations in Banach Spaces,Appl. Math. Comput., 168 (2005) 1031-1044. (SCI,EI)
[2] Wen Liping, Li Shoufu,Stability of Theoretical Solution and Numerical Solution of Nonlinear Differential Equations with Piecewise Delays, J. Comput. Math., 23 (4) (2005) 393-400. (SCI,CSCD)
[3]文立平,李寿佛,余越昕,王文强,Banach空间中非线性刚性延迟微分方程theta-方法的渐近稳定性,系统仿真学报, 17(3) (2005) 606-608. (EI, CSCD)
[4]余越昕,文立平,李寿佛,刚性延迟积分微分方程单支方法的B-收敛性,计算数学,27(3)(2005) 291-302. (CSCD)
[5]余越昕,文立平,李寿佛,非线性比例延迟微分方程线性theta-方法的渐近稳定性,系统仿真学报, 17(3) (2005) 604-605. (EI, CSCD)
[6]余越昕,文立平,非线性中立型延迟微分方程单支θ-方法的稳定性,湘潭大学自然科学学报,7(4)(2005) 1-4 
[7]余越昕,文立平,非线性积分微分方程单支θ-方法的稳定性分析,江西师范大学学报:自然科学版,29(2)(2005) 153-155
早些时候的部分论文
[1]文立平,黄乘明,一族多步二阶导数方法的收缩性,计算数学,23 (3)(2001)265-270. (CSCD)
[2]文立平,时滞微分方程θ-方法的非线性稳定性,湘潭大学自然科学学报,20 (4 )(1998)7-9.
[3]文立平,肖爱国,单隐辛Runge-Kutta-Nystrom方法,湘潭大学自然科学学报,19 (2 )(1997)16-19.
[4] 文立平,时滞微分方程初值问题数值方法的误差估计,长沙水电师院学报:自然科学版,13 (1) (1998) 10-12
[5]李寿佛,文立平,A (α)-收缩的高阶混合方法及二阶导数方法,湘潭大学自然科学学报,15 (1 )(1993)4-19
[6] 文立平,缩放微分方程隐式Euler方法的稳定性,长沙电力学院学报(自然科学版),14 (1) (1999) 11-13
[7]文立平,二级对角隐式辛Runge-Kutta-Nystrom方法的稳定性,长沙电力学院学报(自然科学版),12(4)(1997) 10-12
[8]文立平,一类对角隐式辛Runge-Kutta-Nystroem方法,湘潭大学自然科学学报,20(2) (1998) 1-4
[9]余越昕文立平,一类线性多步法关于变延迟微分方程的渐近稳定性,长沙电力学院学报:自然科学版,18(3)(2003),4-6 
成果获奖

[1] 湖南省自然科学奖二等奖: 非线性中立型泛函微分方程理论及数值分析,湖南省人民政府,2015, 王晚生,李寿佛,文立平,姜英军,吴君,张瑗.
[2] 2014年国家级教学成果奖二等奖: 构筑多层平台,创新协同机制,推进地方高校计算科学人才培养综合改革, 黄云清、舒适、肖爱国、高协平、文立平、陈艳萍.
[3] 湘潭大学2013年度关心共青团工作育才奖, 文立平, 湘潭大学 ,2014.04
[4] 湖南省高等教育省级教学成果奖一等奖:依托优质资源,构筑高层平台,强化协同效应,培养优秀计算科学人才, 黄云清、舒适、肖爱国、高协平、文立平,2013.12
[5] 湘潭大学高等教育教学成果奖一等奖:依托优质资源,构筑高层平台,强化协同效应,培养优秀计算科学人才, 黄云清、舒适、肖爱国、高协平、文立平,2013.12.16
[6] 教育部普通高等教育精品教材《数值计算方法》,教高司函〔2009〕203号,黄云清,舒适,陈艳萍,金继承,文立平, 2009;
[7] 湖南省优秀教学成果二等奖:发扬特色与优势,强化精品课程和教材建设,培养多层次高素质计算数学人才,黄云清、肖爱国、舒适、陈艳萍、文立平,2006.12
[8] 2018年优秀科技工作者,中国系统仿真协会,2018年10月。


相关话题/科学学院 计算