删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

湖南大学材料科学与工程学院导师教师师资介绍简介-严红革

本站小编 Free考研考试/2021-08-18

1968年10月出生。安徽定远人。工学博士。教授,博士生导师。入选教育部“新世纪优秀人才计划”。材料学院副院长、校教学委员会委员、院教学委员会主任、湖南省喷射沉积技术及应用重点实验室、湖南省先进导电银浆工程技术研究中心主任。获部省级一、二、三等奖共5项;发表学术论文150篇,其中SCI论文60余篇;获发明专利8项。
热忱欢迎有金属材料、材料成型、焊接等背景的本科生、硕士生、博士后加入本团队!
E-mail. yanhg68@163.com QQ.














基本信息
现任湖南大学材料学院副院长、湖南大学教学委员会委员、学院教学委员会主任、湖南省喷射沉积技术及应用重点实验室主任、湖南省先进导电银浆工程技术研究中心主任。
入选国家教育部“新世纪优秀人才计划”(2006年)、 湖南省“121人才工程计划”第三层次人选(2005年),获湖南省****基金项目资助(2003年),入选湖南省普通高等学校学科带头人培养对象(2003年)。中国材料研究学会青年委员会第六、第七届常务理事。


教育背景
1987.9~1991.6 在中南大学(原中南工业大学)材料科学与工程系金属材料及热处理专业读本科,获工学学士学位。
1991.9~1994.3 在中南大学(原中南工业大学)粉末冶金专业攻读研究生,获工学硕士学位。
1994.9~1997.9 在中南大学(原中南工业大学)金属材料及热处理专业读研究生,获工学博士学位。

1997.11~2001.2 毕业留校工作。
工作履历
1997.11~2001.2 在中南大学博士毕业后留校工作。
2001.2~现在 在湖南大学材料科学与工程学院工作。



学术兼职
喷射沉积技术及应用湖南省重点实验室主任(2003.7~)
湖南省先进导电银浆工程技术研究中心主任(2018.7~)

校教学委员会委员(2018.7~)

院教学委员会主任(2018.6~)
研究领域
1.高性能铝合金、镁合金先进制备技术
针对航空、航天、交通车辆等领域对高性能铝合金、镁合金的需求问题,研究合金的晶粒细化、纳米沉淀相调控、织构弱化的新方法及原理,合金的强韧化新方法及原理,高性能合金的塑性加工新技术、热处理新工艺。

2.结构与功能一体化合金及金属基复合材料
主要研究高强高塑高阻尼铝合金、镁合金、钢铁及金属基复合材料的先进制备技术。
3.功能性纳米粉体的制备及表面改性技术
开展电子浆料、能源、催化、传感等领域用高性能纳米纯金属、合金、氧化物等纳米粉体的先进制备技术及粉体表面改性技术。

4.高性能合金材料先进焊接技术及焊缝质量控制方法
重点研究铝合金、镁合金、高强钢、不锈钢等的激光焊接、搅拌摩擦焊、电阻焊等新技术新工艺及焊缝质量控制新方法。
研究概况
主持过国家863计划项目、国家自然科学基金项目、国家自然科学基金-云南省联合基金重点项目、教育部博士点基金项目、教育部新世纪优秀人才资助计划项目、湖南省****基金项目和其它部省级项目十余项。作为主要科研人员参加的国家级和部省级科研项目有9项。
学术成果
发表学术论文150余篇,其中SCI期刊论文60余篇。获发明专利8项。代表性论文:

[1] Hongmei Xu, Hongge Yan, Chen Zhenhua. Mechanical and electrical properties of Al2O3/Ce0.8Y0.2O1.9 composite electrolytes. Materials Science and Engineering B, 2007, 145(1-3): 85-90
[2] Xu Hongmei, Yan Hongge,Chen Zhenhua. The flexural strength and densification behavior of Al2O3-doped Ce0.8Y0.2O1.9 electrolyte composites. Materials Science and Engineering A,2007, 447(1-2):222-226
[3] Xu Hongmei, Yan Hongge, Chen Zhenhua.Low-temperature combustion synthesis and sintering of nanosized Ce0.8Y0.2O1.9 powders. Materials Characterization, 2008, 59(3): 301-305
[4] Hongmei Xu, Hongge Yan, Chen Zhenhua. Preparation and properties of Y3+ and Ca2+ co-doped ceria electrolyte materials for ITSOFC. Solid State Sciences, 2008, 10(9): 1179-1184
[5] Zhu Su-Qin, Yan Hong-Ge, Xia Wei-Jun, Liu Ji-Zi, Jiang Jun-Feng. Influence of different deformation processing on the AZ31 magnesium alloy sheets. Journal of Materials Science, 2009, 44(14): 3800-3806
[6] Q. Guo, H. G. Yan, H. Zhang, Z. H. Chen, Z. F. Wang. Behaviour of AZ31 magnesium alloy during compression at elevated temperatures. Materials Science and Technology, 2005, 21(11): 1349-1354
[7] Xu Hongmei, Yan Hongge, Chen Zhenhua. Sintering and electrical properties of Ce0.8Y0.2O1.9 powders by citric acid- nitrate low-temperature combustion process. Journal of Power Sources, 2006, 163(1):409-414
[8] Q. Guo, H. G. Yan, Z. H. Chen, H. Zhang. Elevated Temperature Compression Behavior of Mg-Al-Zn Alloys. Materials Science and Technology, 2006, 22(6):725-728
[9] Q. Guo, H. G. Yan, Z.H. Chen, H. Zhang. Grain refinement in as-cast AZ80 Mg alloy under large strain deformation. Materials Characterization, 2007, 58(2): 162-167
[10] Y. P. Sun, H. G. Yan, Z. H. Chen, D. Chen, G. Chen. Effect of a novel sequential motion compaction process on the densification of multi-layer spray deposited 7090/SiCp composites. Journal of Materials Science, 2008, 43: 6200-6205
[11] Yu Z H, Yan H G, Gong, X. S, Quan, Y J, Chen, J H, Chen, Q. Microstructure and mechanical properties of laser welded wrought ZK21 magnesium alloy, Materials Science and Engineering A, 2009, 523(1-2): 220-225
[12] S. Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu and J. Tian. Effect of twinning and dynamic recrystallization on the high strain rate rolling process. Scripta Materialia, 2010, 63(10): 985-988
[13] Yan Hongge, Chen Jihua, Guo Qiang, Su Bin, Wu Yuanzhi. Microstructure evolutions of AZ80 magnesium alloy during multi-directional compression deformation at elevated temperature. International Journal of Materials Research (Z Metallkd.), 2010, 102(2): 1-9
[14] Yuan-Zhi Wu, Hong-Ge Yan, Ji-Hua Chen, Su-Qin Zhu, Zhi-Wen Liu, Jin Tian. Hot deformation behavior and microstructure evolution of ZK21 magnesium alloy, Materials Science and Engineering A, 2010, 527(16-17): 3670-3675
[15] Z.H.Yu, H.G.Yan, S. J. Chen, J. H. Chen, P.L.Zeng. Method for welding highly crack susceptible magnesium alloy ZK60. Science and Technology of Welding & Joining, 2010, 15(5): 354-360
[16] Z.H.Yu, H.G.Yan, J.H.Chen, Y. Z.Wu. Effect of Zn content on the microstructures and mechanical properties of laser beam-welded ZK series magnesium alloys. Journal Materials Science, 2010, 45(14):3797-3803
[17] B. Su, H.G. Yan, G. Chen, J.L. Shi, J.H. Chen, P.L. Zeng.Study on the preparation of the SiCp/Al–20Si–3Cu functionally graded material using spray deposition. Materials Science and Engineering A, 2010, 527(24-25): 6660-6665
[18] Yan H-G,Wu Y-Z,Chen J-H,Zhu S-Q,Liu Z-W,Tian J. Microstructure evolution of ZK40 magnesium alloy during high strain rate compression, Materials science and Technology. 2011, 27 (9): 1416-1421
[19] Wu Y Z, Yan H G, Chen J H, Du Y G, Zhu S Q, Su B. Microstructure and mechanical properties of ZK21 magnesium alloy processed by multiple forging at different strain rate. Materials Science and Engineering A, 2012, 556: 164-169.
[20] Zhu S Q, Yan H G, Chen J H, Wu Y Z, Su B, Du Y G, Liao X Z. Feasibility of high strain-rate rolling of magnesium alloy across a wide temperature range. Scripta Materialia, 2012, 67(4): 404-407
[21] Zhu S Q, Yan H G, Chen J H, Wu Y Z, Du Y G, Liao X Z. Fabrication of Mg-Al-Zn-Mn alloy sheets with homogeneous fine-grained structures using high strain-rate rolling in a wide temperature range. Materials Science Engineering A, 2013, 559: 765-772
[22] Wu Y Z, Yan H G, Chen J H, Zhu S Q, Su B, Zeng P L. Microstructure and mechanical properties of ZK60 alloy fabricated by multiple forging [J]. Material Science and Technology, 2013, 29(1): 54-59
[23]X. L. Chen, H. G. Yan, J. H. Chen, B. Su and Z. H. Yu. Effects of grain size and precipitation on liquation cracking of AZ61 magnesium alloy laser welding joints. Science and Technology of Welding and Joining, 2013, 18(6): 458-465
[24] Chen Jihua, Chen Zhenhua, Yan Hongge, Zhang Fuquan, Liao Kun. Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys. Journal of Alloy and Compound, 2008, 461(1-2): 209-215
[25] Chen Jihua, Chen Zhenhua, Yan Hongge, Zhang Fuquan. Microstructural characterization and mechanical properties of a Mg-6Zn-3Sn-2Al alloy. Journal of Alloy and Compound, 2009, 467(1-2): L1-L7
[26] Z.H. Chen, Y.Q. He, H.G. Yan, Z.G. Chen, X.J. Yin, G. Chen. Ambient temperature mechanical properties of Al–8.5Fe–1.3V–1.7Si/SiCP composite. Materials Science and Engineering A, 2007, 460-461: 180–185
[27]Yuan-zhi WU, Hong-ge YAN, Su-qin ZHU, Ji-hua CHEN, An-min LIU, Xian-lan LIU. Flow behavior and microstructure of ZK60 magnesium alloy compressed at high strain rate. Trans. Nonferrous Met. Soc. China, 2014, 24: 930-939
[28]Yu Haiyang, Yan Hongge, Chen Jihua. Effects of minor Gd addition on microstructures and mechanical properties of the high strain-rate rolled Mg-Zn-Zr alloys. Journal of Alloys and Compounds, 2014, 586: 757-765
[29] Z. M. Yang, H.G. Yan, J.H. Chen, B. Su, G.H. Zhang, Q. Zhao. Microstructural characterisation and liquation behaviour of laser welded joint of fine grained AZ91 magnesium alloy thin sheets. Science and Technology of Welding and Joining, 2015, 20(1), 27-34
[30]S.Q. Zhu, H.G. Yan, X.Z. Liao, S.J. Moody, G. Sha, Y.Z. Wu, S.P. Ringer. Mechanisms for enhanced plasticity in magnesium alloys. Acta Materialia, 2015, 82: 344–355
[31] Chao Chen, Jihua Chen, Hongge Yan, Bin Su, Min Song, Suqin Zhu. Dynamic precipitation, microstructure and mechanical properties of Mg-5Zn-1Mn alloy sheets prepared by high strain-rate rolling. Materials & Design, 2016, 100: 58-66
[32]Jimiao Jiang, MinSong, HonggeYan, ChaoYang, Song Ni. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg-Zn-Mn alloy processed by high strain rate rolling.Materials Characterization, 2016, 121: 135-138
[33]Yang Xuanye, Yan Hongge, Chen Jihua, He Mao, Xu Feng, Zhang Zhengfu, Xu Hongmei. Solid state synthesis of ultrafine-LiCoO2 by enhanced thermal decomposition of carbonate precursors followed by double-calcining. Solid State Ionics, 2016, 289:159-167
[34]Meixin Cheng, Jihua Chena, Hongge Yan, Bin Sua, Zhaohui Yu, Weijun Xia, Xiaole Gong. Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system. Journal of Alloys and Compounds, 2017, 691:95-102
[35] Feng Xu, Hongge Yan, Jihua Chen, Mao He, Zhengfu Zhang, Changling Fan,Gengshuo Liu. Improving electrochemical properties of LiCoO2by enhancing thermal decomposition of Cobalt and Lithium carbonates to synthesize ultrafine powders. Ceramics International, 2017, 43: 6494-6501
[36] JiangWu, JihuaChen, HonggeYan, WeijunXia, BinSu, LangYu, GengshuoLiu, MinSong. Enhancing the mechanical properties of high strain rate rolled Mg–6Zn–1Mn alloy by pre- rolling. Journal of Materials Science, 2017,52(17): 10557-10566
[37] Feng Xu, Hongge Yan, Jihua Chen, Zhengfu Zhang, Changling Fan. Improving electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by enhancing thermal decomposition of carbonates to synthesize ultrafine powders. Journal of Electroanalytical Chemistry, 2018, 820: 118-122
[38] Jimiao Jiang, Jiang Wu, Song Ni, Hongge Yan, Min Song. Improving the mechanical properties of a ZM61 magnesium alloy by prerolling and high strain rate rolling. Materials Science & Engineering A, 2018, 712: 478-484
[39]Zou J K, Yan H G, Chen J H, Xia W J, Su B, Lei Y, Wu Q. Effects of Sn on microstructure and mechanical properties of as-rolled Mg-5Zn-1Mn alloy. Materials Science & Technology, https://doi.org/10.1080/**.2018.**
[40]Zhou B, Chen J H, Yan H G, Xia W J, Su B, Guo H, Zhu W J. To improve strength and bio-corrosion resistance of Mg-4Zn alloy via high strain rate rolling combined with double aging. Materials Letter, https://doi.org/10.1016/j. matlet.2018.05.112


奖励与荣誉
获教育部技术发明一等奖1项、中国机械工业科技进步二等奖1项、其它部省级科技进步三等奖3项。




相关话题/材料科学与工程学院 湖南大学