删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

湖南大学物理与微电子科学学院导师教师师资介绍简介-罗海陆

本站小编 Free考研考试/2021-08-18

基本信息
罗海陆,湖南大学教授、博士生导师。2007年毕业于南京大学物理系,获得物理学博士学位。长期从事的研究方向为:自旋光子学、光计算与光图像处理、量子测量与量子成像。 以第一作者或通讯作者在National Science Review、PNAS、Reportson Progress in Physics、Science Advances、 Light: Science & Applications 等杂志发表论文100余篇。论文总被引用 4700 余次,H 因子为 37(Google Scholar)。入选爱思唯尔中国高被引****(2020年,物理学)。 研究成果获得教育部高等学校科学研究优秀成果奖(2020年,二等奖)。
Hailu Luo is a professor and doctoral supervisor of Hunan University. In 2007, he graduated from the Department of Physics of Nanjing University with a doctorate degree in physics. His long-term research interests include: spin photonics, optical computing and optical image processing, quantum measurement and quantum imaging. As the first author or corresponding author, he has published more than 100 papers in scientific journals such asNational Science Review, PNAS, Reports on Progress in Physics, Science Advances, and Light: Science & Applications. The papers have been cited more than 4700 times, and the H factor is 37 (Google Scholar). He was selected as Elsevier Most Cited Chinese Researchers (2020, Physics). The research results won the Outstanding Achievement Award for Scientific Research of Higher Institutions of the Ministry of Education (2020, second prize).

教育背景
Hailu Luoreceivedthe PhDfrom Nanjing University, Nanjing, China, in 2007.
工作履历
He joined Hunan University in 2007, and is now a professor in Department of Physics.
研究领域
Research Interesting
I. Spin Photonics
Spin-orbit interaction of photons is a weak coupling between intrinsic spin and extrinsic orbit degrees of freedom of photons. Our current research interests include fundamental theory and important applications of the spin–orbit interaction of photons.
II. Optical Computing and Optical Image Processing
Opticalorphotonic computingusesphotonsproduced bylasersordiodesfor computation. For decades, photons have promised to allow a higherbandwidththan theelectronsused in conventional computers.Optical mage processingis a optical method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.Our current research interests include fundamental theory in optical computingand its important applications in optical image processing and microscopy.
III. Quantum Measurement and Quantum Imaging
Quatnum measurement exploits quantum mechanics to achieve a sensitivity or resolution that is better than can be achieved using only classical systems. Our current research interests include leveraging quantum mechanics to enhance the fundamental accuracy of measurements and enabling new regimes or modalities for sensors and measurement science.Quantum imagingis a new sub-field ofquantum opticsthat exploits quantum correlations such asquantum entanglementof theelectromagnetic fieldin order to image objects with aresolutionor other imaging criteria that is beyond what is possible inclassical optics.Our current research interests include fundamental theory in quantum imaging andits important applications in optical image processingand microscopy.

科研项目
Full List of Publications:
https://scholar.google.com/citations?user=swQBk0QAAAAJ&hl=zh-CN&oi=ao


Selected List of Publications (Asthefirstauthororcorrespondingauthor):
2021
69.Polarization evolution on the higher-order Poincare sphere via photonic Dirac points,Physical Review A(2021).
68.Realization of ultra-small stress birefringence detection with weak-value amplification technique,Applied Physics Letters118, 161104(2021).

67. Nonspecular effects in the vicinity of a photonic Dirac point,Physical Review A103, 023522 (2021).
66.Two-dimensional optical spatial differentiation and high-contrast imaging,National Scicence Review8, nwaa176(2021).AAAS EurekAlert!
2020
65.Optical analog computing of two-dimensional spatial differentiation based on Brewster effect,Optics Letters45, 6867(2020).
64.Weak-value amplification for optical signature of topological phase transitions,Photonics Research8, B47 (2020).
63. Metasurface enabled quantum edge detection,Science Advances6,eabc4385(2020).Phys.Org
62.Goos-Hanchen effect enabled optical differential operation and image edgedetection,Applied Physics Letters116, 211103(2020).
61.Wavelength-independent optical fully differential operation based on the spin-orbit interaction of light,APLPhotonics5, 036105(2020).AIP Scilight
60.Giant photonic spin Hall effect near the Dirac points,Physical Review A101, 023826 (2020).
59.Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect,Physical Review Applied13, 014057 (2020).
58. Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect,APL Photonics5, 016105 (2020).
57.Spatial differential operation and edge detection based on geometric spin Hall effect of light,Optics Letters45, 877 (2020).
2019
56.Ultrasensitive detection of ion concentration based on photonic spin Hall effect,Applied Physics Letters115, 251102 (2019).
55.Spin controlled wavefront shaping metasurface with low dispersion in visible frequencies,Nanoscale11, 17111 (2019).
54. Optical edge detection based on high efficiency dielectric metasurface,Proceedings of the National Academy of Sciences116, 11137 (2019).
53. Goos-H?nchen and Imbert-Fedorov effects in Weyl semimetals,Physical Review A99, 023807 (2019).
52. Large in-plane asymmetry spin angular shifts of light beam near critical angle,Optics Letters44, 207 (2019).
2018
51. Weak-value amplification for Weyl-point separation in momentum space,New Journal of Physics20, 103050 (2018).
50.Transitional Goos-H?nchen effect due to the topological phase transitions,Optics Express26,23705(2018).
49. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere,Optics Letters43, 3570 (2018).
48. Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,Photonics Research6, 511 (2018).
47.Broadband Photonic Spin Hall Meta-Lens,ACS Nano12,82(2018).
2017
46.Giant quantized Goos-Hanchen effect on the surface of graphene in quantum Hall regime,Physical Review A96,043814(2017).
45.Precise identification of graphene layers at the air-prism interface via pseudo-Brewster angle, Optics Letters42, 4135(2017).
44.Measurements of Pancharatnam-Berry phase in mode transformations on hybrid-order Poincaré sphere,Optics Letters42, 3447(2017).
43.Strong spin-orbit interaction of light on the surface of atomically thin crystals,Physical Review A95, 063827 (2017).
42.Geometric phase Doppler effect: when structured light meets rotating structured materials,Optics Express25, 11564 (2017).
41.Recent advances in spin Hall effect of light,Reports on Progress in Physics80, 066401 (2017). (Invited Review)
40.Observation of the Goos-H?nchen shift in graphene via weak measurements,Applied Physics Letters110, 161115 (2017).
39.Dielectric metasurfaces for quantum weak measurements,Applied Physics Letters110, 031105 (2017).
38.Quantized spin Hall effect in graphene,Physical Review A95, 013809 (2017).
37.Observation of tiny polarization rotation rate in total internal reflection via weak measurements,Photonics Research5, 92 (2017).
36.Polarization evolution of vector beams generated by q-plates,Photonics Research5, 64 (2017).
35.Generation of arbitrary vector vortex beams on hybrid-order Poincarésphere,Photonics Research5, 15 (2017).
34.Photonic spin Hall effect in metasurfaces: a brief review,Nanophotonics6, 51 (2017). ( Invited Review )
2016
33.Propagation model for vector beams generated by metasurfaces,Optics Express24, 21177 (2016).
32.Compact photonic spin filter,Applied Physics Letters109, 181104 (2016).
31.Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens,Applied Physics Letters108, 101102 (2016).
2015
30.Photonic spin filter with dielectric metasurfaces,Optics Express23, 33079 (2015).
29.Higher-order laser mode converters with dielectric metasurfaces,Optics Letters40, 5506 (2015).
28.Realization of spin-dependent splitting with arbitrary intensity patternsbased on all-dielectric metasurfaces,Applied Physics Letters107, 041107 (2015).
27.Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases,Optics Letters40, 3193(2015).
26.Manipulating the spin-dependent splitting by geometric Doppler effect,Optics Express23, 16682 (2015).
25.Modified weak measurements for the detection of the photonic spin Hall effect,Physical Review A91, 062105 (2015).
24.Hybrid-order Poincare sphere,Physical Review A91, 023801 (2015).
23.Photonic spin Hall effect in dielectric metasurfaces with rotational symmetry breaking,Optics Letters40, 756 (2015).
22.Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,Optics Express23, 1767 (2015).
21.Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,Light: Science & Applications4, e290 (2015).
学术成果

Before 2015
20.Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,Applied Physics Letters104, 051130 (2014).
19.Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect,Applied Physics Letters105, 151101 (2014).
18.Realization of polarization evolution on higher-order Poincare sphere with metasurface,Applied Physics Letters104, 191110 (2014).
17.Determination of magneto-optical constant of Fe films with weak measurements,Applied Physics Letters105, 131111 (2014).
16.Generation of arbitrary cylindrical vector beams on the higher order Poincare sphere,Optics Letters39, 5274 (2014).
15.Generation of cylindrical vector vortex beams by two cascaded metasurfaces,Optics Express22, 17207 (2014).
14.Photonic spin Hall effect in topological insulators,Physical Review A88, 053840 (2013).
13.Identifying graphene layers via spin Hall effect of light,Applied Physics Letters101, 251602 (2012).
12.Weak measurements of a large spin angular splitting of light beam on reflection at the Brewster angle,Optics Express20, 16003 (2012).
11.Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,Physical Review A85, 043809 (2012).
10.Goos-Hanchen and Imbert-Fedorov shifts of vortex beams at airleft-handed-material interfaces,Physical Review A85, 053822 (2012).
9.Steering far-field spin-dependent splitting of light by inhomogeneous anisotropic media,Physical Review A86, 053824 (2012).
8.Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,Physical Review A84, 043806 (2011).
7.Enhancing or suppressing the spin Hall effect of light in layered nanostructures,Physical Review A84, 033801 (2011).
6.Spin Hall effect of light in photon tunneling,Physical Review A82, ** (2010).
5.Role of transverse-momentum currents in the optical Magnus effect in free space,Physical Review A81, ** (2010).
4.Spin Hall effect of a light beam in left-handed materials,Physical Review A80, ** (2009).
3.Rotational Doppler effect in left-handed materials,Physical Review A78, 033805 (2008).
2.Reversed propagation dynamics of Lagurre-Gaussian beams in left-handed materials,Physical Review A77, 023812 (2008).
1.Construction of a polarization insensitive lens by quasiisotropic metamaterial slab,Physical Review E75, ** (2007).
奖励与荣誉
Prizes & Awards
Outstanding Achievement Award for Scientific Research of Higher Education Institutions of the Ministry of Education(2020, Second Prize)
Elsevier's 2020 Most Cited Chinese Researchers ( Physics )
NaturalScienceFoundationforDistinguishedYoungScholarsofHunanProvince







相关话题/科学学院 微电子

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-廖蕾
    基本信息廖蕾,博士,男,1981年10月出生,湖南大学物理与微电子科学学院教授,博士生导师。主要开展高性能纳电子器件的研究。Email:liaolei@whu.edu.cn;liaolei@hnu.edu.cn;Severalpostdoctoralresearchpositionsareavail ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-李福祥
    基本信息李福祥:教授,博导研究方向:凝聚态理论,自旋电子学,拓扑物理,量子计算,非平衡统计物理。计划每年招收数名研究生、博士、博士后联系方式:fuxiangli(at)hnu.edu.cn(注意自己把@改一下)QQ:;办公室:物理楼A211课题组网站:https://liphysicshnu.wor ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-刘渊
    基本信息邮箱:yuanliuhnu@hnu.edu.cn个人英文主页(personalwebsite):liugroup.blog教育背景2010年-2015年美国加州大学洛杉矶分校,材料科学工程,博士2006年-2010年浙江大学,电子信息工程,学士工作履历2017.09-至今湖南大学,物理微电子 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-孙辰
    基本信息孙辰:教授,博士生导师研究方向:凝聚态理论物理,主要为磁性系统,可积系统,介观系统。欢迎研究生、本科生加入课题组。教育背景2007-2011:本科,武汉大学2011-2018:博士,TexasA&MUniversity工作履历2018-2020:博士后,BrownUniversity2020 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-马建民
    基本信息马建民,男,湖南大学物理与微电子科学学院副教授,湖南省****基金获得者。先后在德州大学奥斯汀分校、南洋理工大学、香港中文大学、卧龙岗大学进行博士后/访学研究工作。研究领域包括:锂/钠离子电池、电容器、电催化等纳米技术、第一性原理DFT在电池和电催化体系的应用以及智能电站和微生物有机无水处理 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-秦志辉
    基本信息秦志辉,男,汉族,中共党员,1978年3月出生于山东,湖南大学物理与微电子科学学院教授,博士生导师。计划在物理学(理学)、电子科学与技术(工学)两个专业招收博士研究生,在物理学(理学)、电子科学与技术(学硕)两个专业招收硕士研究生;计划在物理学、电子科学与技术博士后科研流动站招收博士后科研人 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-唐黎明
    基本信息地址:湖南大学物理与微电子科学学院,理工楼A栋307.邮箱:lmtang@hnu.edu.cn教育背景2003年获湖南大学“材料科学与工程:材料物理与化学”工学硕士学位;2008年获湖南大学“物理学:凝聚态物理学”理学博士学位。工作履历2003.4至今,分别任湖南大学物电学院应用物理系讲师、 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-王玲玲
    基本信息湖南大学物理与微电子科学学院教授、博士生导师,湖南省物理学会副理事长,中国材料研究学会高级会员,中国物理学会会员,中国腐蚀与防护学会会员。《应用物理前沿》编委,功能材料》编审委。教育背景1975年9月—1978年7月:南京大学物理系磁学专业,大学本科1992年9月—1995年10月:湖南大学 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-童庆军
    基本信息研究领域:理论凝聚态物理、量子光学、量子信息。目前的研究兴趣包括:二维材料和范德瓦尔斯异质结中的自旋以及能谷现象,平衡以及非平衡量子系统中的拓扑性质,开放量子系统中的退相干及其抑制等。办公室:物电院A栋214E-mail:tongqj@hnu.edu.cn教育背景2010.9—2013.6: ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学物理与微电子科学学院导师教师师资介绍简介-文双春
    基本信息教学单位:电子科学与技术系研究领域:光学与光电子办公地点:物电院A栋408办公电话:电子邮箱:scwen@hnu.edu.cn教育背景1999年3月至2001年12月,中国科学院上海光学精密机械研究所,光学专业,获理学博士学位;1991年9月至1994年6月,华中师范大学,学科教学论专业,获 ...
    本站小编 Free考研考试 2021-08-18