删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长沙理工大学物理与电子科学学院导师教师师资介绍简介-张振华教授

本站小编 Free考研考试/2021-08-22

闂傚倸鍊搁崐椋庣矆娴h櫣绀婂┑鐘插€寸紓姘辨喐閺冨牄鈧線寮介鐐茶€垮┑锛勫仧缁垶寮悩缁樷拺闂侇偆鍋涢懟顖涙櫠閹绢喗鐓熼柟鍨暙娴滄壆鈧娲栨晶搴ㄥ箲閸曨剚濮滈柡澶嬪閻庢娊姊婚崒娆戠獢闁逞屽墰閸嬫盯鎳熼娑欐珷濞寸厧鐡ㄩ悡鏇㈡煟濡崵鍙€闁告瑥瀚埀顒冾潐濞插繘宕归懞銉ょ箚闁割偅娲栭悙濠囨煏婵炲灝鍔村ù鍏兼礋濮婃椽鎳¢妶鍛€鹃梺鑽ゅ枂閸庢娊鍩€椤掍礁鍤柛娆忓暙椤曪綁骞庨挊澶愬敹闂侀潧顧€婵″洭宕㈤柆宥嗏拺鐟滅増甯掓禍浼存煕閹惧鎳囬柕鍡楀暙閳诲酣骞嬮悩纰夌床闂備礁鎲¢悷锕傛晪閻庤鎸稿Λ娑㈠焵椤掑喚娼愭繛鎻掔箻瀹曟繈骞嬮敃鈧弸渚€鏌熼崜褏甯涢柡鍛倐閺屻劑鎮ら崒娑橆伓闂傚倸鍊搁崐鐑芥倿閿旈敮鍋撶粭娑樻噽閻瑩鏌熸潏楣冩闁稿孩鏌ㄩ埞鎴﹀磼濮橆厼鏆堥梺绋款儑閸犳劗鎹㈠☉銏犵婵炲棗绻掓禒鑲╃磼缂併垹骞愰柛瀣崌濮婅櫣鎷犻弻銉偓妤佺節閳ь剚娼忛妸锕€寮块柣搴ㄦ涧閹芥粍绋夊鍡愪簻闁哄稁鍋勬禒锕傛煟閹惧瓨绀冪紒缁樼洴瀹曞崬螣閸濆嫷娼曞┑鐘媰鐏炶棄顫紓浣虹帛缁诲牓宕洪埀顒併亜閹烘垵顏╃紒鐘劜閵囧嫰寮埀顒勫磿閸愯尙鏆﹂柕澶堝劗閺€浠嬫煟閹邦剙绾фい銉у仱閹粙顢涘⿰鍐ф婵犵鈧磭鍩fい銏℃礋閺佸倿鎮剧仦钘夌闂傚倷鑳舵灙闁哄牜鍓涚划娆撳箻鐠囪尙鐤囬梺绯曞墲閻燂箓宕戦弽銊х闁糕剝蓱鐏忎即鏌i幘瀛樼濞e洤锕、娑樷枎閹烘繂濡抽梻浣呵圭€涒晠宕归崷顓燁潟闁规崘顕х壕鍏兼叏濡搫鎮戝Δ鏃堟⒒娓氣偓閳ь剛鍋涢懟顖涙櫠鐎涙ḿ绠惧ù锝呭暱閸氭ê鈽夊Ο閿嬵潔闂侀潧绻嗛埀顒€鍘栭崙鑺ョ節閻㈤潧孝闁挎洏鍊濋幃褎绻濋崶褏鏌у銈嗗笒鐎氼參鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷





张振华,男,博士(后),二级教授,博士生导师,长沙理工大学纳米结构及纳米器件研究所所长, “湖湘****(拔尖人才)”****。 担任J. Am. Chem.Soc.; Nano Lett.; J. Matter. Chem. A; J. Phys. Chem. Lett. 等20余种国际著名刊物审稿。毕业于北京师范大学获硕士学位,毕业于湖南大学获博士学位,也曾在复旦大学表面物理国家重点实验室从事博士后研究。
科研情况:主要研究方向为(1)低维材料物理(电、磁、光)特性;(2)微纳电子器件输运及设计。近年来,先后主持国家自然科学基金项目 (如面上项目4项)、湖南省自然科学基金项目等项目研究。 以第1作者或通讯作者身份发表SCI论文100余篇,其中在Adv. Funct. Mater.CarbonJ. Mater. Chem. CPhys. Rev. BAppl. Phys. Lett.等1、2区期刊上发表论文70余篇(1 区论文20余篇;Appl. Phys. Lett.15篇、含封面文章1篇; H因子>25).
获奖及荣誉:(1)湖南省自然科学奖二等奖(排名1);(2)湖南省优秀博士学位论文奖;(3)湖南省优秀硕士学位论文奖(8篇,指导教师);(4)湖南省自然科学优秀学术论文一等奖(3篇,排名1)、二等奖(4篇,排名1或2);(5)湖南省优秀高等教育研究成果奖二等奖(排名1);(6)湖南省高等教育教学成果二等奖(排名2);(7)长沙理工大学(中国移动)优秀教学贡献奖(首届);(8)湖南省“新世纪121人才工程”人才(首批);(9)获交通部“全国交通系统优秀教育工作者”荣誉称号;(10)获湖南省“优秀研究生导师”荣誉称号(2019,首届)。
指导学生情况:指导的硕士研究生中,多人获得湖南省研究生创新项目及国家奖学金的资助、评为湖南省优秀毕业生、“长理十星”、“长沙理工大学研究生科研标兵等。也有多人进入名所名校(如:中科院物理所、香港城市大学、复旦大学、武汉大学、重庆大学)攻读博士学位,或是直接进入名企(如著名外企ATL公司,等)担任项目工程师或研发工程师。指导的研究生学位论文中,评为湖南省优秀硕士学位论文8篇。指导本科生参加科研取得良好成绩,学生以第1作者身份在Carbon, Phys. Chem. Chem. Phys., Org. Electron., J .Appl .Phys.等SCI刊物上发表论文18篇。
课题组每年招收物理以及电子科学与技术方向博士生、硕士生若干,欢迎报考。
联系方式:Email: zhzhang@csust.edu.cn, cscuzzh@163.com.
通讯地址:410114, 长沙市(雨花区)万家丽南路二段960号
长沙理工大学物理与电子科学学院
近年在国际刊物上发表的部分论文 (“*”通讯作者):
[33] R. Hu, Y. H. Li, Z. H. Zhang*, Z. Q. Fan and L. Sun. O-Vacancy-line defective Ti2CO2 nanoribbons: novel magnetism, tunable carrier mobility, and magnetic device behaviors . J. Mater. Chem. C 7, 7745-7759 (2019) [32] J.K Hu, Z.H. Zhang*, Z.Q.Fan, R.L. Zhou*.Electronic and Transport Properties and Physical Field Coupling Effects for Net-Y Nanoribbons. Nanotechnology.30 485703 (2019) [31] W. Kuang, R. Hu, Z.Q.Fan, and Z.H Zhang* .Spin-Dependent Carrier Mobility and Its Gate-Voltage Modifying Effects For Functionalized Single Walled Black Phosphorus Tubes. Nanotechnology.30, 145201(2019) [30] R. Hu, Z.Q. Fan, C.H. Fu, L.Y. Nie, W.R. Huang, Z.H. Zhang*. Structural stability, magneto-electronics and spin transport properties of triangular graphene nanoflake chains with edge oxidation. Carbon 126, 93-104(2018) . [29] P.F.Yuan, Z.Q. Fan, Z.H. Zhang*. Magneto-electronic properties and carrier mobility in phagraphene nanoribbons: A theoretical prediction. Carbon 124, 228-237 (2017). [28] P. F. Yuan, Z. H. Zhang*, Z. Q. Fan and M. Qiu. Electronic structure and magnetic properties of penta- graphene nanoribbons. Phys. Chem. Chem. Phys., 19, 9528-9536 (2017)

[27] D. Wang, Z.H. Zhang*, X.Q. Deng, Z.Q. Fan, G.P. Tang. Magnetism and magnetic transport properties of the polycrystalline graphene nanoribbon heterojunctions. Carbon 98, 204 (2016).
[26] Z. Zhu, Z. H. Zhang*, D. Wang, X.Q.Deng, Z.Q.Fan, G.P.Tang. Magnetic structure and magnetic transport characteristics of nanostructures based on armchair-edged graphene nanoribbons. J. Mater. Chem. C 3, 9657 (2015).
[25] J. Li, Z.H. Zhang*, D. Wang, Z. Zhu, Z.Q.Fan, G. P. Tang, and X.Q. Deng. Electronic structures, field effect transistor and bipolar field-effect spin filtering behaviors of functionalized hexagonal graphene nanoflakes. Carbon 69, 142(2014).

[24] J.Li, Z.H. Zhang*, M. Qiu,C.Yuan, X.Q. Deng, Z.Q. Fan,G.P. Tang, B. Liang. High- performance current rectification in a molecular device with doped graphene electrodes. Carbon, 80 575(2014).
[23] Z. H. Zhang*, C. Guo, D.J. Kwong, J.Li, X. Q. Deng, and Z.Q. Fan. A Dramatic odd–even oscillating behavior for the current rectification and negative differential resistance in carbon-chain- modified donor–acceptor molecular devices. Adv. Funct. Mater. 23, 2765 (2013)

[22] Z. H. Zhang*, C.Guo, G. Kwong, and X. Q. Deng. Electronic transport of nitrogen-capped monoatomic carbon wires between lithium electrodes. Carbon 51, 313 (2013)
[21] Z.Q.Fan*, Z.H. Zhang*, M. Qiu, X.Q. Deng, G.P Tang. The site effects of B or N doping on I-V characteristics of a single pyrene molecular device. Appl. Phys. Lett.101, 073104 (2012)
[20] X.Q Deng, Z.H Zhang*, G. Tang, Z. Fan , M. Qiu, C. Guo. Rectifying behaviors induced by BN-doping in trigonal graphene with zigzag edges. Appl. Phys. Lett.100, 06310(2012)
[19] G. P. Tang, J. C. Zhou*, Z. H. Zhang*, X. Q. Deng, and Z. Q. Fan. Altering regularities of electronic transport properties in twisted graphene nanoribbons. Appl. Phys. Lett.101, 023104 (2012)
[18]C. Guo, Z. H. Zhang*, G. Kwong, J. B. Pan, X. Q. Deng, and J. J. Zhang. Enormously enhanced rectifying performances by modification of carbon chains for D-σ-A molecular devices. J. Phys. Chem. C116, 12900(2012)
[17] J. Li, Z.H. Zhang*, J.J. Zhang, X.Q. Deng. Rectifying regularity for a combined nanostructure of two trigonal graphenes with different edge modifications. Org. Electron.13, 2257 (2012)
[16] M. Qiu, Z. H. Zhang*, Z. Q. Fan, X. Q. Deng, J. B.Pan. Transport properties of a squeezed carbon monatomic ring: a route to negative differential resistance device. J.Phys.Chem.C. 115, 11734(2011)
[15]G. Kwong, Z.H. Zhang*, J.B Pan. Rectifying and negative differential resistance behaviors of a functionalized Tour wire: the position effects of functional groups. Appl. Phys. Lett. 99, 123108 (2011).
[14] J. B. Pan, Z.H. Zhang*, X. Q. Deng, M. Qiu, C. Guo. The transport properties of D-σ-A molecules: A strikingly opposite directional rectification. Appl. Phys. Lett. 98, 013503(2011)
[13] J. B. Pan, Z.H. Zhang*, X. Q. Deng, M. Qiu, C. Guo. Current rectification induced by asymmetrical electrode materials in a molecular device. Appl. Phys. Lett. 98, 092102(2011)
[12] Z.H.Zhang*, X. Q. Deng, X. Q. Tan, M. Qiu, J. B. Pan Examinations into the contaminant -induced transport instabilities in a molecular device. Appl. Phys. Lett. 97,183105(封面文章,http://apl.aip.org/ resource/ 1/applab /v97/i18)(2010)
[11]J. B. Pan, Z.H. Zhang*, X. Q. Deng, M. Qiu, C. Guo .Rectifying performance of D-π-A molecules based on cyano-vinyl aniline derivatives. Appl. Phys. Lett.97, 203104(2010)
[10] X.Q Deng, Z.H Zhang*, J. Zhou, M. Qiu , G..Tang. Electronic transport of the Silane Chain doped with phosphorus and boron atoms. Appl. Phys. Lett. 97, 143103(2010)
[9] M. Qiu, Z. H. Zhang*, X. Q. Deng, J. B.Pan. End-group effects on negative differential resistance and rectifying performance of a polyyne-based molecular wire. Appl. Phys. Lett .97, 242109(2010)
[8] K-H. Ding*, Z.G. Zhu, Z. H. Zhang, and J. Berakdar. Magnetotransport in an impurity-doped few-layer graphene spin valve. Phys. Rev. B 82, 155143(2010).
[7] X. Q. Deng, Z.H. Zhang*, J.C Zhou, M Qiu. Length and end group dependence of the electronic transport properties in carbon atomic molecular wires. J.Chem. Phys.132, 124107(2010)
[6] M. Qiu, Z.H. Zhang*, X.Q. Deng, and K.Q. Chen. Conduction switching behaviors of a small molecular device, J.Appl. Phys. 107, 063704 (2010)
[5] X. Q. Deng, J. C. Zhou*, Z. H. Zhang*, G. P. Tang. Electrode metal dependence of the rectifying performance for molecular devices: A density functional study. Appl. Phys. Lett. 95, 103113 (2009)
[4] X. Q. Deng, J. C. Zhou*, Z. H. Zhang*. Electrode conformation - induced negative differential resistance and rectifying performance in a molecular device. Appl. Phys. Lett. 95, 163109 (2009)
[3] Z. Y. Li, W. Sheng, Z. Y. Ning, Z.H.Zhang, Z. Q. Yang, H. Guo. Magnetism and spin-polarized transport in carbon atomic wires, Phys. Rev. B 80, 115429(2009).
[2] Z. H Zhang*, Jingcui Peng, Huang Xiaoyi. Low-temperature magnetoresistance of individual single- walled carbon nanotubes: A numerical study. Phys. Rev. B 66, 085405 (2002)
[1] Z. H. Zhang*, Jingcui Peng, Hua Zhang. Low-temperature resistance of individual single -walled carbon nanotubes: A theoretical estimation. Appl. Phys. Lett. 79, 3515(2001)












闂傚倷娴囬褏鈧稈鏅犻、娆撳冀椤撶偟鐛ラ梺鍦劋椤ㄥ懐澹曟繝姘厵闁告挆鍛闂佹娊鏀遍崹鍫曞Φ閸曨垰绠涢柛鎾茬劍閸嬔冾渻閵堝繒鍒扮€殿喖澧庨幑銏犫攽鐎n亞鍔﹀銈嗗笒鐎氼剛绮婚妷锔轰簻闁哄啠鍋撻柛搴″暱閻g兘濡烽妷銏℃杸濡炪倖姊婚悺鏂库枔濡眹浜滈柨鏂垮⒔閵嗘姊婚崒姘偓鐑芥倿閿旈敮鍋撶粭娑樻噽閻瑩鏌熼悜姗嗘畷闁稿孩顨嗛妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡も偓閳藉鈻庣€n剛绐楅梻浣哥-缁垰螞閸愵喖钃熸繛鎴欏灩鍞梺闈涚箚閸撴繈鎮甸敃鈧埞鎴︽倷閹绘帗鍊悗鍏夊亾闁归棿绀侀拑鐔兼煏閸繍妲哥紒鐙欏洦鐓曟い顓熷灥閺嬬喐绻涢崼婵堝煟婵﹨娅g槐鎺懳熼悡搴樻嫛闂備胶枪缁ㄦ椽宕愬Δ鍐ㄥ灊婵炲棙鍔曠欢鐐烘煙闁箑澧版い鏃€甯″娲嚃閳圭偓瀚涢梺鍛婃尰閻╊垶鐛繝鍌楁斀閻庯綆鍋嗛崢浠嬫⒑缂佹◤顏勵嚕閼搁潧绶為柛鏇ㄥ幐閸嬫挾鎲撮崟顒傤槰闂佹寧娲忛崹浠嬪极閹扮増鍊风痪鐗埫禍楣冩煥濠靛棝顎楀ù婊冨⒔缁辨帡骞夌€n剛袦闂佸搫鐬奸崰鎰缚韫囨柣鍋呴柛鎰ㄦ櫓閳ь剙绉撮—鍐Χ閸℃ê鏆楅梺纭呮珪閹瑰洦淇婇幘顔肩闁规惌鍘介崓鐢告⒑閹勭闁稿妫濇俊瀛樼節閸屾鏂€闂佺粯锕╅崑鍕妤e啯鈷戦柛娑橈功閳藉鏌f幊閸旀垵顕i弻銉晢闁告洦鍓欓埀顒€鐖奸弻锝夊箛椤撶偟绁烽梺鎶芥敱濮婅绌辨繝鍕勃闁稿本鑹鹃~鍥⒑閸濆嫮鐒跨紒缁樼箓閻i攱绺介崜鍙夋櫇闂侀潧绻掓慨瀵哥不閹殿喚纾介柛灞剧懅閸斿秵銇勯妸銉﹀殗閽樻繈姊婚崼鐔恒€掗柡鍡檮閹便劌顫滈崱妤€浼庣紓浣瑰敾缁蹭粙婀侀梺鎸庣箓鐎氼垶顢楅悢璁垮綊鎮℃惔銏犳灎濠殿喖锕ュ钘夌暦閵婏妇绡€闁稿本绮庨幊鍡樼節绾版ɑ顫婇柛瀣噽閹广垽宕奸妷褍绁﹂梺鍦濠㈡﹢鏌嬮崶顒佺厸闁搞儮鏅涢弸鎴炵箾閸涱喚澧紒缁樼⊕濞煎繘宕滆琚f繝鐢靛仜閹锋垹绱炴担鍝ユ殾闁炽儲鏋奸崼顏堟煕椤愩倕鏋庨柍褜鍓涢弫濠氬蓟閿濆顫呴柣妯哄悁缁敻姊洪幖鐐测偓鎰板磻閹剧粯鈷掑ù锝堫潐閸嬬娀鏌涢弬璺ㄐら柟骞垮灲瀹曠喖顢橀悙鑼喊闂佽崵濮村ú銈咁嚕椤掑嫬绫嶉柛灞绢殔娴滈箖鏌ㄥ┑鍡涱€楀褌鍗抽弻銊モ槈閾忣偄顏�
547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鏌嶈閸撶喖寮绘繝鍥ㄦ櫜濠㈣泛锕﹂悿鍥⒑鐟欏嫬绀冩い鏇嗗懐鐭嗛柛鎰ㄦ杺娴滄粓鐓崶銊﹀鞍妞ゃ儲绮撻弻锝夊箻鐎靛憡鍒涘┑顔硷攻濡炶棄鐣峰Δ鍛闁兼祴鏅涢崵鎺楁⒒娴e憡鎲搁柛锝冨劦瀹曟垿宕熼娑樹患闂佺粯鍨兼慨銈夊疾閹间焦鐓ラ柣鏇炲€圭€氾拷1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻锝夊閵忊晜姣岄梺绋款儐閹瑰洤鐣疯ぐ鎺濇晝闁挎繂娲﹂濠氭⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閸欏浜滄い鎰╁焺濡叉椽鏌涢悩璇у伐妞ゆ挸鍚嬪鍕節閸愵厾鍙戦梻鍌欑窔閳ь剛鍋涢懟顖涙櫠閹绢喗鐓涢悘鐐登规晶鑼偓鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偞鎯旈埦鈧弨浠嬫煟閹邦垰鐨哄褎鐩弻娑㈠Ω閵壯傝檸闂佷紮绲块崗姗€寮幘缁樺亹闁肩⒈鍓﹀Σ浼存煟閻斿摜鐭婄紒缁樺笧閸掓帒鈻庨幘宕囧€為梺鍐叉惈閸熶即鏁嶅⿰鍕瘈闁靛骏绲剧涵楣冩煥閺囶亪妾柡鍛劦濮婄粯鎷呴崨濠傛殘闁煎灕鍥ㄧ厱濠电姴鍟版晶杈╃磽閸屾稒宕岄柟绋匡攻缁旂喖鍩¢崒娑辨閻庤娲︽禍婵嬪箯閸涱垱鍠嗛柛鏇ㄥ幗琚欓梻鍌氬€风粈浣革耿闁秴鍌ㄧ憸鏃堝箖濞差亜惟闁宠桨鑳堕鍥⒑閸撴彃浜濇繛鍙夌墵閹偤宕归鐘辩盎闂佺懓顕崑娑㈩敋濠婂懐纾煎ù锝呮惈椤eジ鏌曢崶褍顏い銏℃礋婵偓闁宠桨绀佹竟澶愭⒒娴g懓顕滅紒瀣浮瀹曟繂鈻庨幘璺虹ウ闁诲函缍嗛崳顕€寮鍡欑瘈濠电姴鍊规刊鍏间繆閺屻儲鏁辩紒缁樼箞閹粙妫冨☉妤佸媰闂備焦鎮堕崝宀€绱炴繝鍌ゅ殨妞ゆ劑鍊楅惌娆愪繆椤愩倖鏆╅柛搴涘€楅幑銏犫攽鐎n亞鍊為梺闈浨归崕鏌ヮ敇濞差亝鈷戦柛婵嗗濡叉悂鏌eΔ浣虹煉鐎规洘鍨块獮鎺懳旈埀顒勫触瑜版帗鐓涢柛鎰╁妿婢ф盯鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲烽梻浣呵圭换鎰版儔閼测晜顫曢柟鐑橆殢閺佸﹪鏌涜箛鎿冩Ц濞存粓绠栭幃娲箳瀹ュ棛銈板銈庡亜椤︾敻鐛崱娑樻閹煎瓨鎸婚~宥夋⒑閸︻厼鍔嬮柛銊ㄦ珪缁旂喖寮撮悢铏诡啎闁哄鐗嗘晶浠嬪箖婵傚憡鐓涢柛婊€绀佹禍婊堝础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀛樼闁哄瞼鍠栭幃婊兾熺拠鏌ョ€洪梻浣呵归鍥ㄧ箾閳ь剟鏌$仦鐣屝ユい褌绶氶弻娑滅疀閺冨倶鈧帗绻涢崱鎰仼妞ゎ偅绻勯幑鍕洪鍜冪船婵犲痉鏉库偓褏寰婃禒瀣柈妞ゆ牜鍋涚粻鐘虫叏濡顣抽柛瀣崌閻涱噣宕归鐓庮潛闂備礁鎽滈崰鎾寸箾閳ь剛鈧娲橀崹鍧楃嵁濡皷鍋撳☉娅亪顢撻幘缁樷拺缂備焦锚閻忥箓鏌ㄥ鑸电厓鐟滄粓宕滃☉銏犵;闁绘梻鍘ч悞鍨亜閹烘垵鏋ゆ繛鍏煎姍閺岀喖顢欓懖鈺佺厽閻庤娲樺ú鐔笺€佸☉銏″€烽柤纰卞墮婵附淇婇悙顏勨偓鏍垂婵傜ǹ纾垮┑鐘宠壘缁€鍌炴倶閻愭澘瀚庡ù婊勭矒閺岀喖骞嗚閹界娀鏌涙繝鍐ㄥ闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞茬喐绂嶉崼鏇犲祦闁搞儺鍓欐儫闂侀潧顦崐鏇⑺夊顑芥斀闁绘劘鍩栬ぐ褏绱掗懠顒€浜剧紒鍌氱Ч閹崇偤濡疯濞村嫰姊洪幐搴㈢5闁稿鎹囧Λ浣瑰緞閹邦厾鍘遍棅顐㈡处濞叉牜鏁崼鏇熺厵闁稿繐鍚嬮崐鎰版煛鐏炵晫啸妞ぱ傜窔閺屾稖绠涢弮鍌楁闂傚洤顦甸弻娑㈠Ψ椤旂厧顫╃紒鐐劤閵堟悂寮婚弴鐔虹瘈闊洦娲滈弳鐘差渻閵堝棙绀夊瀛樻倐楠炲牓濡搁妷搴e枔缁瑩宕归纰辨綍闂傚倷鑳舵灙妞ゆ垵妫濋獮鎰節濮橆剛顔嗛梺鍛婁緱閸ㄩ亶宕伴崱娑欑厱闁哄洢鍔屾晶浼存煛閸℃ê鍝烘慨濠勭帛閹峰懘宕崟顐$帛闁诲孩顔栭崰妤呭磿婵傜ǹ桅闁圭増婢樼粈鍐┿亜韫囨挻顥犲璺哄娣囧﹪濡惰箛鏇炲煂闂佸摜鍣ラ崹璺虹暦閹达附鍋愮紓浣贯缚閸橀亶姊洪弬銉︽珔闁哥噥鍋呴幈銊╁焵椤掑嫭鈷戠紒瀣儥閸庢劙鏌熺粙娆剧吋妤犵偛绻樺畷銊р偓娑櫭禒鎯ь渻閵堝棛澧柤鐟板⒔缁骞嬮敂瑙f嫽婵炶揪绲介幉锟犲箚閸儲鐓曞┑鐘插閸︻厼寮查梻渚€娼х换鍫ュ磹閺囥垺鍊块柛顭戝亖娴滄粓鏌熺€电ǹ浠滄い鏇熺矌缁辨帗鎷呯憴鍕嚒濡炪値鍙€濞夋洟骞夐幘顔肩妞ゆ巻鍋撶痪鐐▕閹鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴g硶妲堟俊顖涚矌閸犲酣鎮鹃埄鍐跨矗濞达絽澹婂Λ婊勭節閻㈤潧浠╅柟娲讳簽缁辩偤鍩€椤掍降浜滄い鎰╁焺濡偓闂佽鍣换婵嬪春閳ь剚銇勯幒鎴濐仾闁抽攱甯¢弻娑氫沪閹规劕顥濋梺閫炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備礁婀遍崑鎾翅缚濞嗘拲澶婎潩閼哥數鍘遍柣搴秵閸嬪懐浜告导瀛樼厵鐎瑰嫮澧楅崵鍥┾偓瑙勬礈閸忔﹢銆佸Ο琛℃敠闁诡垎鍌氼棜濠电姷鏁告慨鏉懨洪敃鍌氱9闁割煈鍋嗙粻楣冩煙鐎涙ḿ绠橀柡瀣暟缁辨帡鍩€椤掑倵鍋撻敐搴℃灍闁绘挸鍟伴幉绋库堪閸繄顦у┑鐐村灦濮樸劑鎯岄崱妞曞綊鏁愰崼鐔粹偓鍐煟閹烘埊韬柡宀€鍠庨埢鎾诲垂椤旂晫浜愰梻浣呵归鍡涘箰閹间礁鐓″璺哄閸嬫捇宕烽鐐愩儲銇勯敂鍨祮婵﹥妞介弻鍛存倷閼艰泛顏梺鍛娒幉锛勬崲濞戙垹绾ч柟瀵稿仜閺嬬姴顪冮妶鍐ㄧ仾闁挎洏鍨归悾鐑筋敃閿曗偓鍞悷婊冪灱缁厽寰勬繛鐐杸闁圭儤濞婂畷鎰板箻缂佹ê鈧潡鏌ㄩ弮鈧畷妯绘叏閾忣偅鍙忔俊顖氱仢閻撴劙鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲舵俊鐐€х拋锝嗕繆閸ヮ剙鐒垫い鎺嗗亾婵犫偓鏉堛劎浠氭俊鐐€ら崢濂稿床閺屻儲鍋╅柣鎴eГ閺呮煡鏌涢妷顖炴闁告洖鍟村铏圭矙閹稿孩鎷卞銈冨妼閹冲繒绮嬪澶婄畾妞ゎ兘鈧磭绉洪柡浣瑰姍瀹曘劑顢欓崗鍏肩暭闂傚倷绀侀幉鈥趁洪悢铏逛笉闁哄稁鍘奸拑鐔兼煥濠靛棭妲归柛濠勫厴閺屾稑鈻庤箛锝嗏枔濠碘槅鍋呴崹鍨潖濞差亝鐒婚柣鎰蔼鐎氫即鏌涘Ο缁樺€愰柡宀嬬秮楠炴帡鎮欓悽鍨闁诲孩顔栭崳顕€宕滈悢椋庢殾闁圭儤鍩堝ḿ鈺呮煥濠靛棙顥犻柛娆忓暞缁绘繂鈻撻崹顔界亾闂佺娅曢幐鍝ュ弲闂佺粯枪椤曆呭婵犳碍鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋婵鐗婇弫楣冩⒑闂堚晝绋婚柟顔煎€垮濠氭晲閸℃ê鍔呴梺闈涚箳婵挳寮稿▎鎾寸厽闁绘ê鍟挎慨澶愭煕閻樺磭澧电€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熺€电ǹ浠滄い鏇熺矋閵囧嫰鏁冮崒銈嗩棖缂備浇椴搁幐鎼侇敇婵傜ǹ妞藉ù锝嚽规竟搴ㄦ⒒娴d警鏀版繛鍛礋閹囨偐鐠囪尙鐤囬梺缁樕戝鍧楀极閸℃稒鐓曢柟閭﹀枛娴滈箖鏌﹂幋婵愭Ш缂佽鲸鎹囧畷鎺戔枎閹存繂顬夐梻浣告啞閸旀洟鈥﹂悜鐣屽祦闊洦绋掗弲鎼佹煥閻曞倹瀚�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸稈鍋撴担鑲濇棃宕ㄩ闂寸盎闂備焦鍎崇换鎰耿闁秵鍋傞悗锝庡枟閳锋垿鎮峰▎蹇擃仾闁稿孩顨婇弻娑㈠Ω閵壯嶇礊婵犮垼顫夊ú鐔煎极閹剧粯鏅搁柨鐕傛嫹
相关话题/科学学院 电子