吴锦标副教授
自我介绍
副 教授,硕士生导师,中国运筹学会会员,中国运筹学会随机服务与运作管理分会理事,中国现场统计学会理事,中国概率统计学会会员,入选中南大学第七批“升华 育英计划”。中山大学运筹学与控制论专业硕士毕业;中南大学概率论与数理统计专业博士毕业,中南大学信息科学与工程学院计算机科学与技术专业博士后出站, 澳门大学工商管理学院管理科学与工程专业博士后出站。现阶段主要从事Lévy过程及其在排队论、库存论和数理金融中的应用方面的研究工作(性能分析+随机 控制)。在EJOR, COR, CIE, NA-RWA, CMA, AMM,中国科学,应用数学学报,系统工程理论与实践,系统科学与数学等国内外高影响因子的优秀期刊上发表论文20多篇。欢迎对应用概率和随机运筹学感兴 趣的同学加入我们研究团队。本方向硕士生毕业后适合在各金融机构、企事业单位、服务公司等单位从事运筹优化的管理工作,也可继续深造、出国留学等。
电子邮箱
wujinbiao@csu.edu.cn
研究方向
随机控制与随机运筹,数理金融与保险精算
主讲课程
高等数学,概率论与数理统计,应用随机过程,排队论基础,随机过程,随机分析,随机微分方程,Lévy过程,金融数学,随机控制
学习经历
工作经历
在研项目
[1] 国家自然科学基金:多类顾客优先权重试排队系统的研究, 项目编号: 11201489, 2013.1-2015.12, 22万, 主持
[2] 数学交叉项目:蜂窝移动通信网络性能评估,5万,主持
[3] 国家自然科学基金:几类复杂排队系统的研究及在可靠性分析中的应用, 项目编号: 11271373, 2013.1-2016.12, 60万, 参与
[4] 国家自然科学基金:马尔可夫到达排队系统的建模分析及算法研究, 项目编号: 10971230, 2010.1-2012.12, 25万, 参与
[5] 博士点基金项目(博导类):复杂排队系统的研究,项目编号:2010062110021,2011.1-2013.12,6万, 参与
[6] 第51批中国博士后科学基金: 多类顾客优先权排队系统的研究, 项目编号:74141000305, 5万,主持
[7] 中央高校青年教师助推:多类顾客优先权重试排队系统的研究, 项目编号:721500353,主持
[8] 中南大学博士后基金一等资助:计算机通信网中排队系统的研究, 主持
[9] 第六批中国博士后科学基金特别资助:排队网络及其在计算机通信网络中的应用, 15万, 主持
[10] 中南大学第七批“升华育英计划”资助:随机网络的研究, 2013.7-2018.7, 50万, 主持
完成项目
[1] 湖南省研究生创新基金: 排队模型和可靠性模型的研究, 项目编号: 3340-74236000001, 2008,01-2009,12, 主持
[2] 中南大学优秀博士学位论文扶植基金:复杂排队系统的建模分析及算法研究,项目编号: 2008yb008, 2009,01-2010,06, 主持
[3] 中南大学拔尖博士学位论文创新基金:复杂排队系统的建模分析及算法研究, 项目编号: 3960-71131100003, 2009,01-2010,06, 主持
获奖情况
发表论文
[0] J. Wu, Z. Liu, Y. Peng, Lévy process-driven fluid queue with server breakdowns and vacations. Submitted.
[1] J. Wu, Z. Liu, Y. Peng, On the BMAP1,BMAP2/PH/g,c retrial queueing system. Submitted.
[2] W. Zhou, Z. Lian, J. Wu, When should service firms provide free experience service? European Journal of Operational Research, 234 (2014) 830-838. (SCI, IF in 2013: 1.843)
[3] J. Wu, Z. Lian, Analysis of M1,M2/G/1 G-queueing system with retrial customers. Nonlinear Analysis: Real World Applications, 14 (2013) 365–382. (SCI, IF in 2013: 2.338)
[4] J. Wu, Z. Lian, A single-server retrial G-queue with priority and unreliable server under Bernoulli vacation schedule. Computers & Industrial Engineering, 64 (2013) 84-93. (SCI, IF in 2013: 1.69)
[5] J. Wu, J. Wang, Z. Liu, A discrete-time Geo/G/1 retrial queue with preferred and impatient customers. Applied Mathematical Modelling, 37 (2013) 2552-2561. (SCI, IF in 2013: 2.158)
[6] J. Wu, Z. Liu, Y. Peng, A discrete-time Geo/G/1 retrial queue with preemptive resume and collisions, Applied Mathematical Modelling, 35 (2011) 837-847. (SCI, IF in 2013: 2.158)
[7] J. Wu, Z. Liu, G. Yang, Analysis of the finite source MAP/PH/N retrial G-queue operating in a random environment. Applied Mathematical Modelling, 35 (2011) 1184-1193. (SCI, IF in 2013: 2.158)
[8] J. Wu, Z. Liu, Y. Peng, On the BMAP/G/1 G-queues with second optional service and multiple vacations. Applied Mathematical Modelling, 33 (2009) 4314-4325. (SCI, IF in 2013: 2.158)
[9] J. Wu, X. Yin, An M/G/1 retrial G-queue with non-exhaustive random vacations and unreliable server.
Computers and Mathematics with Applications 62 (2011) 2314–2329. (SCI, IF in 2012: 2.069)
[10] Z. Liu, J. Wu*, An MAP/G/1 G-queues with preemptive resume and multiple vacations. Applied Mathematical Modelling, 33 (2009) 1739-1748. (SCI, IF in 2013: 2.158)
[11] Z. Liu, J. Wu*, G. Yang, An M/G/1 retrial G-queue with preemptive resume and feedback under N-policy subject to the server breakdowns and repairs. Computers and Mathematics with Applications, 58 (2009) 1792-1807. (SCI, IF in 2012: 2.069)
[12] J. Wu, X. Yin, Z. Liu, The M/G/1 retrial G-queues with N-policy, Feedback, Preemptive Resume and Unreliable Server, Acta Mathematicae Applicatae Sinica (In Chinese), 32(2), 2009, 323-335. EI
[13] J. Wu, Z. Liu, X. Yin, Y. Fu, Logistics model based on queueing theory, Systems Engineering - Theory & Practice (In Chinese), 29(9), 2009, 78-83. EI
[14] J. Wu, Z. Liu, Y. Peng, An M[X]/G/1 repairable queueing system with negative customers and random vacation on non-exhaustive service, Journal of Systems Science and Mathematical Sciences (In Chinese), 31(3) 2010, 38-46.
[15] Z. Liu, J. Wu*, The M/G/1 queueing system with negative customers, preemptive resume, feedback and random vacation on non-exhaustive service, Applied Mathematics (In Chinese), 21(2) 2010, 24-30.
[16] J. Liao, J. Wu*, Z. Liu, G. Yang, Reliability analysis of a parallel repairable system based on Markovian arrival process. Systems Engineering - Theory & Practice (In Chinese), 33(6), 2010, 1040-1046. EI
[17] Y. Peng, J. Wu*, X. Yang, A discrete-time Geo/G/1 retrial queue with negative customers and impatient customers. Systems Engineering - Theory & Practice (In Chinese), 31(12), 2011, 2373-2379. EI
[18] Y. Peng, Z. Liu, J. Wu*, An M/G/1 retrial G-queue with preemptive resume
priority and collisions subject to the server breakdowns and delayed repairs, J. Appl. Math. Comput. 44 (2014) 187-213. EI
[19] S. Yang, J. Wu, Z. Liu, An M[X]/G/1 retrial g-queue with single vacation subject to the server breakdown and repair, Acta Mathematicae Applicatae Sinica, English Series, 29 (2013) 579-596. SCI
[20] 吴锦标,刘再明,彭懿,概率论与数理统计专业研究生教学改革,数学理论与应用,33(1),2013,116-120.
[21] 储育青,刘再明,吴锦标,带有阈值和优先权的三队列轮询排队系统,中国科技论文,2014, (04) 434-440.
[22] Liu Z M, Chu Y Q, Wu J B. The asymptotic behavior of a branching-type polling network in heavy traffic (in Chinese). Sci Sin Math, 2015, 45: 515–526
[23] Z. Liu, Y. Chu, J. Wu*, Heavy-traffic asymptotics of a priority polling system with threshold service policy, Computers & Operations Research 65 (2016) 19-28. SCI