删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于 CBAM-DSC 网络的表情识别方法

本站小编 Free考研考试/2024-10-07

作者:宋文博,高璐,苗壮,林克正
Authors:SONG Wen bo,GAO Lu,MIAO Zhuang,LIN Ke zheng
摘要:针对人脸表情网络模型参数复杂和计算性能偏低等问题 ,提出一种基于卷积注意力机制和深度可分离卷积 (convolutional block attention module-depthwise separable convolution, CBAM-DSC) 网络的表情识别方法 。网络使用深度可分离卷积与传统卷积相结合 ,提出的改进的Inception 模块通过不同分支提取不同特征信息的同时减少了网络参数量 ,提高网络运行的效率 。最后添加了卷积注意力机制模块 ,能够使网络提取特征时重点关注关键信息 ,从而使得提取到的特征表达信息更准确 ,更利于分类 。在 RAF-DB 数据集和 CK + 数据集上的仿真实验表明 ,网络模型 CBAM-DSC 具有较高的识别率 ,消融实验中相比传统 CNN(convolutional neural network) 网络的参数量减少了 6. 4% ,提升了计算性能。
Abstract:Aiming at the problems of complex parameters and low computational performance of facial expression network model, an expression recognition method based on Convolutional Block Attention Module-Depthwise Separable Convolution network is proposed. The network usage depth separable convolution is combined with the traditional convolution. The improved Inception module extracts different feature information through different branches while reducing the network parameters and improving the network operation efficiency. Finally, the convolutional block attention module is added, which can make the network focus on the key information when extracting features, so that the extracted feature expression information is more accurate and more conducive to classification. The simulation experiments on RAF-DB dataset and CK + dataset show that the network model Convolutional Block Attention Module-Depthwise Separable Convolution has a high recognition rate, and the number of parameters in the ablation experiment is reduced by 6. 4% compared with the traditional Convolutional Neural Network, which improves the computing performance.

PDF全文下载地址:

可免费Download/下载PDF全文
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19