作者:\n\t赵鹏飞, 毕淑娟, 刘振杰\n
Authors:\n\tZHAOPengfei,\tBIShujuan,\tLIUZhenjie\n
摘要: 利用微分形式的Poincaré-Sobolev不等式证明了当1<p<n时复合算子TDG的高阶LP可积性,然后进一步讨论了p≥n的情形,获得了复合算子的高阶范数估计,并利用该结果对Lp可积微分形式证明了局部加权范数不等式成立。
Abstract:We firstly prove the higher integrability of the composite operator T D G by using Poincaré-Sobolev inequalities when 1< p < n. Then further consider the case of p ≥ n and obtain the higher order norm estimation of composite operators, by which the weighted norm inequality for Lp integrable differential forms is proved.
PDF全文下载地址:
可免费Download/下载PDF全文
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)