删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于粒子群算法的蓄直组合型电采暖系统运行优化策略

本站小编 Free考研考试/2024-10-07

作者:\n\t王清,李琮琮,王平欣,吴青青,蔡小雨\n

Authors:\n\tWANG Qing, LI Congcong, WANG Pingxin, WU Qingqing, CAI Xiaoyu \n
摘要:\n\t为提高电采暖系统的用电能效,提出了一种基于粒子群算法(PSO,particle swarm optimization)的蓄直组合型电采暖系统运行优化策略。建立了电采暖建筑墙体内外影响因素数学模型,在确定电暖气数量前提下利用Matlab中的Simulink工具箱搭建整体系统。结合需求响应思想建立以用户采暖电费最小为目标函数,选取不同子模块构成控制模块实现仿真验证,并采用反余弦方法对学习因子进行更新的改进粒子群算法,对设定目标函数进行求解。最后通过山东济南某企业用电数据算例,对比能耗和经济性两个方面可得:全天总能耗低于实际的能耗、测得两个连续工作日电费相较未优化时分别节约了17.16%和16.48%。\n

Abstract:\n\tIn order to improve the energy efficiency of the electric heating system, a particle swarm optimization (PSO, Particle Swarm Optimization)-based operation optimization strategy for the direct storage combined electric heating system is proposed.A mathematical model of influencing factors inside and outside the walls of electric heating buildings is established, and the simulink toolbox in matlab is used to build the overall system under the premise of determining the quantity of electric heating.Combining demand response ideas, the objective function is to establish the minimum heating and electricity cost of the user, and different sub-modules are selected to form the control module to achieve simulation verification, and the inverse cosine method is used to update the improved particle swarm algorithm to update the learning factor to solve the set objective function.Finally, through a calculation example of electricity consumption data of an enterprise in Jinan, Shandong, comparing energy consumption and economy can be obtained: the total energy consumption throughout the day is lower than the actual energy consumption, and the electricity bill is reduced by 17.16% compared with the unoptimized time.\n


PDF全文下载地址:

可免费Download/下载PDF全文
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19