删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

用电异常行为预警方法

本站小编 Free考研考试/2024-10-07

作者:万伟,刘红旗,孙洪昌,张峰,王洋,孙伟卿
Authors:WAN Wei,LIU Hongqi,SUN Hong-chang,ZHANG Feng,WANG Yang,SUN Wei-qing摘要:摘要:针对窃电、滥用电等用户异常用电行为给电力公司造成了巨额的经济损失的问题,通过数据驱动方法,利用区域内居民用户日负荷数据分别从横向与纵向两个层面,对用户用能行为进行定量的综合评分,进而识别用户异常用电行为。首先,建立K-Means和SVM分类模型,将单个居民日负荷数据与周边具有相似用电行为的居民进行比较,用于生成用户用电行为评价的横向评分。其次,利用LSTM模型建立用户负荷预测模型,实现与自身历史用电行为的对比,生成用户用电行为评价的纵向评分。最终,通过设定权重进行综合评分。当评分低于一定阈值时进行预警。算例部分利用30个用户4年数据对提出方法进行验证,横向评分结果准确率达到99.9%以上,纵向评分的拟合优度达到95%以上,验证了方法的准确性。
Abstract:Abstract:In view of the huge economic losses caused to power companies by abnormal power consumption behaviors of users such as stealing and abusing electricity, based on data driven method, the daily load data of residents in the region is used to score the users′ energy consumption behavior quantitatively from the horizontal and vertical levels.Firstly, based on K-means and SVM (Support Vector Machine) classification model, the daily load data of individual residents data are compared with those of residents with similar electricity consumption behaviors to generate the user′s horizontal score.Secondly, the user load forecasting model is established by using LSTM (Long Short-Term Memory) model to realize the comparison with their own historical electricity consumption behavior and generate the user’s vertical score.Finally, according to the set weight, a comprehensive score is made. When the score is lower than a certain threshold, early warning is given.The proposed method is verified by the data of 30 users for 4 years, the accuracy of horizontal score is more than 99.9%, and the goodness of fit of vertical score is more than 95%, which proves the feasibility of the method.

PDF全文下载地址:

可免费Download/下载PDF全文
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19