删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于LMD形态滤波的LS-SVM方法研究

本站小编 Free考研考试/2024-10-07

作者:孟良,许同乐,马金英,蔡道勇
Authors:MENG Liang,XU Tong-le,MA Jin-ying,CAI Dao-yong摘要:摘要:在轴承的故障诊断中,为了解决核函数在最小二乘支持向量机中参数选择困难及稀疏性差的问题,提出了局部均值分解(LMD)形态滤波的最小二乘支持向量机(LS-SVM)方法。该方法首先利用LMD对信号进行分解得到PF分量,并对信号做相关分析去除虚假分量,形态滤波降噪后再进行LMD分解得到新PF分量,提取能量特征;其次,对LS-SVM的核函数进行改进,解决核参数选择的问题;应用特征加权法对拉格朗日参数进行特征加权,取其加权平均值作为剪枝方法的阈值,降低稀疏性;最后将能量特征信号输入LS-SVM中,对信息进行训练预测。实验表明,应用该方法能快速有效地对轴承故障信号进行自适应的分类及轴承故障的判断。
Abstract:Abstract:In the diagnosis of bearing, the LS-SVM method research with LMD morphological filtering was put out in order to solve the problem about the kernel function parameter selection and the bad sparsity of least squares vector machine (LS-SVM).First, the LMD was used to decompose the measured signal and PF components were obtained.The correlation analysis was carried out to remove the false components, and the noise of PF components was reduced by morphological filtering.The LMD decomposed the recombinational signal and obtained new PF components, and energy characteristics were got from the new PF component.Secondly, the kernel function of LS-SVM is improved to solve the problem of kernel parameter selection. Lagrange parameters were weighted by feature weighting method, and their weighted average value was taken as the threshold of pruning method to reduce the sparsity. Finally, energy characteristics were put into LS-SVM to train and predict.Experiments showed that this new method could fulfil adaptive classification of bearing fault signals and definite fault conclusion quickly and effectively.

PDF全文下载地址:

可免费Download/下载PDF全文
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19