删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

On the Girth of Tanner (5,7) Quasi-Cyclic LDPC Codes

本站小编 哈尔滨工业大学/2019-10-23

On the Girth of Tanner (5,7) Quasi-Cyclic LDPC Codes

Hengzhou Xu, Baoming Bai, Dan Feng,Cheng Sun

(State Key Laboratory of Integrated Services Networks,Xidian University,Xi’an 710071,China)



Abstract:

The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner (5,7) quasi-cyclic (QC) LDPC codes with length 7p for p being a prime with the form 35m+1, the cycles of lengths 4,6,8,and 10 are analyzed. Then these cycles are classified into sixteen categories,each of which can be expressed as an ordered block sequence,or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fp who has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner (5,7) QC LDPC codes.

Key words:  LDPC codes  quasi-cyclic  Tanner graph  girth

DOI:10.11916/j.issn.1005-9113.16068

Clc Number:TN911

Fund:


Hengzhou Xu, Baoming Bai, Feng Dan, Cheng Sun. On the Girth of Tanner (5, 7) Quasi-Cyclic LDPC Codes[J]. Journal of Harbin Institute of Technology, 2017, 24(6): 80-89. DOI: 10.11916/j.issn.1005-9113.16068.
Fund Sponsored by the National Natural Science Foundation of China (Grant Nos. 61372074 and 91438101) and the National High Technology Research and Development Program of China (Grant No. 2015AA01A709) Corresponding author Baoming Bai, E-mail: bmbai@mail.xidian.edu.cn Article history Received: 2016-03-15



Contents            Abstract            Full text            Figures/Tables            PDF


On the Girth of Tanner (5, 7) Quasi-Cyclic LDPC Codes
Hengzhou Xu, Baoming Bai, Feng Dan, Cheng Sun    
State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China

Received: 2016-03-15
Fund: Sponsored by the National Natural Science Foundation of China (Grant Nos. 61372074 and 91438101) and the National High Technology Research and Development Program of China (Grant No. 2015AA01A709)
Corresponding author: Baoming Bai, E-mail: bmbai@mail.xidian.edu.cn


Abstract: The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner (5, 7) quasi-cyclic (QC) LDPC codes with length 7p for p being a prime with the form 35m+1, the cycles of lengths 4, 6, 8, and 10 are analyzed. Then these cycles are classified into sixteen categories, each of which can be expressed as an ordered block sequence, or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fp who has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner (5, 7) QC LDPC codes.
Key words: LDPC codes    quasi-cyclic    Tanner graph    girth    
1 Introduction LDPC codes, proposed by Gallager[1], are a class of linear codes which can approach Shannon capacity[2]. Later, Tanner[3]presented a bipartite graph, known as Tanner graph, to represent an LDPC code. From the graph theory perspective, the iterative process of the decoding algorithms[4] based on belief propagation for LDPC codes, which results in good decoding performance and has low decoding complexity, can be intuitively understood. But short cycles, especially cycles with length 4, seriously degrade the iterative decoding performance of an LDPC code. For the shortest cycles, their length is called the girth. In the iterative decoding, the exact LLRs can be obtained in the first g/2 iterations, where g is the girth value[5]. That is, girth plays an important role in the design of LDPC codes. Research results show that LDPC codes with large girth, small number of short cycles, and no harmful trapping set perform very well[6]. Structured LDPC codes whose girth is at least six are generally constructed based on algebraic structures, such as finite field[7], partial geometry[8]. Furthermore, LDPC codes with larger girth (more than 8) are also proposed in Refs. [9-17]. Moreover, with regard to circulant permutation matrices (CPMs) based (γ, ρ)-regular QC LDPC codes[18], Fossorier showed that the girth of such codes is at most 12. So to design such (γ, ρ)-regular QC LDPC codes with girth 12 (or to prove the girth of such codes is 12) is an interesting problem.

A QC LDPC code is defined by the null space of sparse matrix H that consists of CPMs and zero matrices of the same size. If each column or row of H has constant number of nonzero elements, denoted by γ, ρ, respectively, the QC LDPC code is (γ, ρ)-regular. Tanner[19] proposed a kind of (γ, ρ)-regular QC LDPC codes and we call them Tanner (γ, ρ) QC LDPC codes for short here. According to Ref.[18], it can be seen that the girth of Tanner (γ, ρ) QC LDPC codes is not more than 12. It is also shown in Ref.[18] that as the size of CPMs increases, the girth of Tanner(γ, ρ) QC LDPC codes can be up to 12. For Tanner (3, 5) QC LDPC codes with length 5p for p being a prime with the form 15m+1, Kim et al.[20] had determined their girth. For Tanner (3, 7) QC LDPC codes with length 7p for p being a prime with the form 21m+1, the girth was obtained by Gholami[21]. As a matter of fact, they classified short cycles in Tanner (3, 5) and (3, 7) QC LDPC codes into several equivalent classes, respectively, and presented the existence conditions for the cycles whose lengths are less than 10, namely, a series of polynomial equations over Fp which have a 15th or 21th unit roots. Finally, by checking the existence of solutions for these polynomial equations, the girth values were obtained.

In this paper, the cycles of Tanner (5, 7) QC LDPC codes with length 7p for p being a prime with the form 35m+1, are first classified and then the equivalent relation is defined. Based on the equivalent relation, the cycles of lengths 4, 6, 8, and 10 are classified into sixteen equivalent classes. Thereinto, the cycles of lengths 4 and 6 have only one equivalent class, the cycles of lengths 8 and 10 have five and nine classes, respectively. On the basis of these sixteen equivalent classes, the sufficient and necessary existence conditions of short cycles in Tanner (5, 7) QC LDPC codes are proposed. According to these conditions, polynomial equations over Fp which have a 35th unit root can be derived. Applying the Euclidean division algorithm to these equations over Fp and (x35-1) (or its simplified form), all remainder polynomials can be also obtained. Unlike Refs.[20] and [21], we check if all the remainder polynomials over Fp are equal to zero, not just the last remainder polynomial, since all the remainder polynomials possibly equal zero over Fp and result in candidate girth values. But there are 1 826 polynomial equations, which are about 7.2 times larger than those of Tanner (3, 7) QC LDPC codes[21]. Moreover, in order to check if the remainder polynomials over Fp equal zero, we need to factor the coefficients of the remainder polynomials. Considering all needed calculation, this is a huge amount of work. Therefore, we do it with the aid of computer. For convenience, all cases and the candidate girth values are recorded in tables, just like those given in Refs. [20] and [21]. By following the candidate girth values obtained in each equivalent class, we obtain the girths of Tanner (5, 7) QC LDPC codes.

2 Cycles in Tanner (5, 7) Quasi-Cyclic LDPC Codes A (γ, ρ)-regular QC LDPC code with length is defined by the null space of the following matrix:

$\boldsymbol{H} = \left[ {\begin{array}{*{20}{c}} {\boldsymbol{I}\left( {{p_{0,0}}} \right)}&{\boldsymbol{I}\left( {{p_{0,1}}} \right)}& \cdots &{\boldsymbol{I}\left( {{p_{0,\rho - 1}}} \right)} \\ {\boldsymbol{I}\left( {{p_{1,0}}} \right)}&{\boldsymbol{I}\left( {{p_{1,0}}} \right)}& \cdots &{\boldsymbol{I}\left( {{p_{1,\rho - 1}}} \right)} \\ \vdots&\vdots&\vdots&\vdots \\ {\boldsymbol{I}\left( {{p_{\gamma - 1,0}}} \right)}&{\boldsymbol{I}\left( {{p_{\gamma - 1,1}}} \right)}& \cdots &{\boldsymbol{I}\left( {{p_{\gamma - 1,\rho - 1}}} \right)} \end{array}} \right]$ (1)

where, for 0 ≤ iγ -1, 0≤ jρ-1, I(pi, j) represents a CPM of size p×p and pi, j is the shift value. In the CPM I(pi, j), the single element "1" is at the ((r + pi, j) mod p)th column and rth row and the elements at the remaining positions are "0". Obviously, I(0) is the p×p identity matrix. As another example, if p=3, then

$\boldsymbol{I}\left( 2 \right) = \left[ {\begin{array}{*{20}{c}} 0&1&0 \\ 0&0&1 \\ 1&0&0 \end{array}} \right]$

Fossorier[18] represented a cycle of length 2i, denoted by 2i-cycle for short, in H as an ordered block sequence:

$\begin{gathered} ({j_0},{l_0});{\rm{ }}({j_1},{l_1});{\rm{ }}({j_2},{l_2}); \cdots ;{\rm{ }}({j_k},{l_k});{\rm{ }} \cdots ;{\rm{ }}({j_i}_{ - 1}, \hfill \\ \;\;\;{l_i}_{ - 1});{\rm{ }}\left( {{j_0},{l_0}} \right) \hfill \\ \end{gathered} $

This cycle can be also denoted by type (j0, j1, …, jk, …, ji-1) for brevity. Clearly, jk does not equal jk+1, lk does not equal lk+1. The block (jk, lk) represents the jkth column and lkth row CPM I(jk, lk) and semicolon between (jk, lk) and (jk+1, lk+1) represents the column-jk+1 and row-lk CPM I(jk+1, lk). Furthermore, the sufficient and necessary existence condition of a 2i-cycle in H was also presented by Fossorier:

$\sum\limits_{k = 0}^{i - 1} {\left( {{p_{{j_k},{l_k}}} - {p_{{j_{k + 1}},{l_k}}}} \right)} = 0\left( {\bmod \;p} \right)$ (2)

We specify the shift value pi, j= αρi+γj in H, where α is a primitive 35th unit root of Fp. Here we focus on γ=5 and ρ=7, then a Tanner (5, 7) QC LDPC code with length 7p can be given by the null space of the following matrix:

$\boldsymbol{H} = \left[ {\begin{array}{*{20}{c}}{{\alpha ^0}}&{{\alpha ^5}}&{{\alpha ^{10}}}&{{\alpha ^{15}}}&{{\alpha ^{20}}}&{{\alpha ^{25}}}&{{\alpha ^{30}}}\\{{\alpha ^7}}&{{\alpha ^{12}}}&{{\alpha ^{17}}}&{{\alpha ^{22}}}&{{\alpha ^{27}}}&{{\alpha ^{32}}}&{{\alpha ^2}}\\{{\alpha ^{14}}}&{{\alpha ^{19}}}&{{\alpha ^{24}}}&{{\alpha ^{29}}}&{{\alpha ^{34}}}&{{\alpha ^4}}&{{\alpha ^9}}\\{{\alpha ^{21}}}&{{\alpha ^{26}}}&{{\alpha ^{31}}}&\alpha &{{\alpha ^6}}&{{\alpha ^{11}}}&{{\alpha ^{16}}}\\{{\alpha ^{28}}}&{{\alpha ^{33}}}&{{\alpha ^3}}&{{\alpha ^8}}&{{\alpha ^{13}}}&{{\alpha ^{18}}}&{{\alpha ^{23}}}\end{array}} \right]$

where p≡1 (mod 35) is a prime. That is, p belongs to {71, 211, 281, 421, 491, 631, …}. This set is denoted by P35.

According to Eq.(1), the sufficient and necessary existence condition of a 2i-cycle in H, whose type is (j0, j1, …, jk, …, ji-1) in Tanner (5, 7) QC LDPC codes, is given by

$\sum\limits_{k = 0}^{i - 1} {\left( {{\alpha ^{7{j_k}}} - {\alpha ^{7{j_{k + 1}}}}} \right)} {\alpha ^{5{l_k}}} = 0\left( {\bmod \;p} \right)$

with j0 = ji, jkjk+1, and lklk+1. According to Ref. [22], the above equation is called basic equation in the remaining paper. Notice that we assume that l0=0. In order to classify cycles in H into block sequences, same as defined in Ref.[22], we give the equivalent relation of cycles in Tanner (5, 7) QC LDPC codes as the following.

Definition 1?? Type (j0, j1, j2, …, ji-1) is equivalent to type (k0, k1, k2, …, ki-1) in Tanner (5, 7) QC LDPC codes if one of the following conditions holds:

1) There exists some c∈{0, 1, 2, 3, 4} such that ks=js + c(mod 5), for all s.

2) There exists some c∈{0, 1, 2, 3, 4} such that ks=js×c(mod 5), for all s.

3) There is some c∈{0, 1, 2, …, i-1} s.t. ks=js+c for all s.

4) There is some c∈{0, 1, 2, …, i-1} s.t. ks= ji-1-s+c for all s.

We can easily find all such types (j0, j1, j2, …, ji-1) of 2i-cycles in Tanner (5, 7) QC LDPC codes, where 0≤jk≤ 4, jkjk+1, and jij0 for 0≤ki-1. On the basis of the above equivalent relation, we partition all types of cycles with lengths not more than 10 in Tanner (5, 7) QC LDPC codes into the following sixteen equivalent classes:

1) 4-cycles: There is only one class (0, 1) for all 4-cycles.

2) 6-cycles: There is only one class (0, 1, 2) for all 6-cycles.

3) 8-cycles: There are five equivalent classes, i.e., (0, 1, 0, 1), (0, 1, 0, 2), (0, 1, 0, 4), (0, 1, 2, 3), and (0, 1, 3, 2) for all 8-cycles.

4) 10-cycles: There are nine equivalent classes, i.e., (0, 1, 2, 3, 4), (0, 1, 2, 4, 3), (0, 1, 3, 2, 4), (0, 1, 4, 2, 3), (0, 1, 0, 2, 3), (0, 1, 0, 2, 4), (0, 1, 0, 3, 4), (0, 1, 2, 0, 1), and (0, 1, 3, 0, 1) for all 10-cycles.

Based on these sixteen equivalent classes and (2), we can obtain the specific basic equations. We assume, for convenience, that t=l1-l0(mod 7), u=l2 -l1 (mod 7), v = l3 -l2 (mod 7), and w = l4-l3 (mod 7). It is clear that t, u, v, and w belong to {±1, ±2, ±3}. Now, what we are going to do is to check if these basic equations over Fp have solutions, and then candidate girth values g can be obtained.

2.1 4-cycles Under the equivalent relation in Definition 1, all 4-cycles belong to the unique class (0, 1) which corresponds to the block sequence: (0, 0); (1, 0); (1, t); (0, t), and t is not equal to 0. According to the values of these blocks, the basic equation can be given as:

$\sum\limits_{k = 0}^1 {\left( {{\alpha ^{7{j_k}}} - {\alpha ^{7{j_{k + 1}}}}} \right)} {\alpha ^{5{l_k}}} = \left( {1 - {\alpha ^7}} \right)\left( {1 - {\alpha ^{5t}}} \right) = 0\left( {\bmod \;p} \right)$

Because α is a primitive 35th unit root, then α7≠ 1, α5t ≠ 1, where -3 ≤t≤3 and t≠ 0. Therefore, the above equation is not satisfied and there is no 4-cycle in Tanner (5, 7) QC LDPC codes.

2.2 6-cycles All 6-cycles belong to the unique class (0, 1, 2) which corresponds to the block sequence: (0, 0); (1, 0); (1, t); (2, t); (2;t+u); (0, t+u), (t+u) (mod 7)is not equal to 0. The basic equation can be written as:

$\sum\limits_{k = 0}^2 {\left( {{\alpha ^{7{j_k}}} - {\alpha ^{7{j_{k + 1}}}}} \right)} {\alpha ^{5{l_k}}} = \left( {1 - {\alpha ^7}} \right)\left( 1 + {\alpha ^{5t + 7}} - \right.\\ \left.\ {\alpha ^{5\left( {t + u} \right)}} - {\alpha ^{5\left( {t + u} \right) + 7}} \right) = 0\left( {\bmod \;p} \right)$

Since α7≠ 1, the basic equation can be modified as:

$\left( {1 + {\alpha ^{5t + 7}} - {\alpha ^{5\left( {t + u} \right)}} - {\alpha ^{5\left( {t + u} \right) + 7}}} \right) = 0\left( {\bmod \;p} \right)$ (3)

As mentioned in Ref.[21], this modified form of the basic equation is called modified basic equation. In this case, Eq.(3) is the modified basic equation. So, there is a 6-cycle in Tanner (5, 7) QC LDPC codes if and only if Eq.(3) is satisfied. For different values of t and u, we can obtain various modified basic equations. Consider t to be a variable, we can use t to express the values of u. If t+u=0 (mod 7), these cases are called invalid cases, and the other cases are valid cases, such as defined in Ref.[21]. We list all cases of (t, u) and the corresponding modified basic equations in Table 1. Thereinto, the cases, labeled by "×", are invalid. We check the existence of the solution for Eq.(3) in each valid case as follows.

表 1
Table 1 All cases of (t, u) and modified basic equations No. (t, u) Modified basic equations

1 (t, t) 1+α5t+7-α10t-α10t+7

2 (t, 2t) 1+α5t+7-α15t-α15t+7

3 (t, 3t) 1+α5t+7-α20t-α20t+7

× (t, -t)

5 (t, -2t) 1+α5t+7-α-5t-α-5t+7

6 (t, -3t) 1+α5t+7-α-10t-α-10t+7



Table 1 All cases of (t, u) and modified basic equations



2.2.1 Case (t, t) According to Table 1, the modified basic equation is 1+α5t+7-α10t-α10t+7. Set x=α5t+7. For 0≤i≤35, we can obtain the values of xi, listed in Table 2. Then the modified basic equation becomes 1+x-x16 -x30. Since x35-1 can be factorized as:

表 2
Table 2 Representation of xi xi Values xi Values xi Values xi Values xi Values xi Values

x α5t+7 x2 α10t+14 x3 α15t+21 x4 α20t+28 x5 α25t x6 α30t+7

x7 α14 x8 α5t+21 x9 α10t+28 x10 α15t x11 α20t+7 x12 α25t+14

x13 α30t+21 x14 α28 x15 α5t x16 α10t+7 x17 α15t+14 x18 α20t+21

x19 α25t+28 x20 α30t x21 α7 x22 α5t+14 x23 α10t+21 x24 α15t+28

x25 α20t x26 α25t+7 x27 α30t+14 x28 α21 x29 α5t+28 x30 α10t

x31 α15t+7 x32 α20t+14 x33 α25t+21 x34 α30t+28 x35 α0 = 1



Table 2 Representation of xi



$\begin{array}{c}{x^{35}} - 1 = \left( {x - 1} \right)({x^4} + {\rm{ }}{x^3} + {\rm{ }}{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1)({x^6} + \\{\rm{ }}{x^5} + {\rm{ }}{x^4} + {\rm{ }}{x^3} + {\rm{ }}{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1){\rm{ }}(1 - x{\rm{ }} + {\rm{ }}\\{x^5} - {x^6} + {\rm{ }}{x^7} - {x^8} + {\rm{ }}{x^{10}} - {x^{11}} + {\rm{ }}{x^{12}} - \\{x^{13}} + {\rm{ }}{x^{14}} - {x^{16}} + {\rm{ }}{x^{17}} - {x^{18}} + {\rm{ }}{x^{19}} - {x^{23}} + \\{\rm{ }}{x^{24}})\end{array}$

and x is a primitive 35th root of unity of Fp, we have

$\begin{array}{l}1 - x{\rm{ }} + {\rm{ }}{x^5} - {x^6} + {\rm{ }}{x^7} - {x^8} + {\rm{ }}{x^{10}} - {x^{11}} + {\rm{ }}{x^{12}} - {x^{13}} + \\{x^{14}} - {x^{16}} + {\rm{ }}{x^{17}} - {x^{18}} + {\rm{ }}{x^{19}} - {x^{23}} + {\rm{ }}{x^{24}} = 0{\rm{ }}\left( \bmod \;p \right)\end{array}$ (4)

The modified basic equation 1+x-x16-x30 can be factorized as

$\begin{array}{l}1{\rm{ }} + {\rm{ }}x - {\rm{ }}{x^{16}} - {\rm{ }}{x^{30}} = {\rm{ }}\left( {1 - {\rm{ }}x} \right)({x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1)({x^4}\\ + {x^3} + {\rm{ }}{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1){\rm{ }}\left( {{x^{15}} + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right){\rm{ }}({x^8} - {x^7} + {\rm{ }}{x^5} - \\{x^4} + x^3 - x{\rm{ }} + {\rm{ }}1)\end{array}$

It is easy to check that 1-x ≠ 0 (mod p), x2 + x + 1≠ 0 (mod p), x4 + x3 + x2 + x + 1≠ 0 (mod p), and x8 -x7 + x5-x4 + x3-x + 1 ≠ 0 (mod p). There are many polynomials like these, such as x2 + 1, x3+ x2 + x + 1, …. We can directly eliminate these factors from modified basic equations, since they are not equal to zero in Fp. The eliminated form of modified basic equation is called reduced form. Here the reduced form is x15+ x + 1. By applying the Euclidean division algorithm to x15+ x + 1 and Eq.(4), the remainder polynomials are x14 -x13 + x12 -x11 + x7 -x6 + 1, x11 -x8 + x6, -x10 + x8 -x6 + 1, x9-x8 -x7 + x6 + x, -x8 + x2 + x + 1, x7 + x6 + x3 + x-1, -x6 -x4 -x3 + x + 2, x5 -x2 + 1, -x4 -2x3 + 2x + 2, 4x3 + x2 -2x-3, -(1/16) x2 + (3/8)x + 11/16, 192x + 272, 71/2 304.

It is clear that the remainder 71/2 304 equals zero in F71. When pP35\{71}, the remainder polynomials cannot be equal to zero in Fp. So the basic equation has no solution in Fp, pP35\{71}.

2.2.2 Case (t, 2t) According to Tables 1 and 2, the modified basic equation 1+α5t+7-α15t-α15t+7 can be written as 1 + x -x10-x31. This equation can be factorized as:

$\begin{array}{l}1{\rm{ }} + {\rm{ }}x{\rm{ }} - {\rm{ }}{x^{10}} - {\rm{ }}{x^{31}} = {\rm{ }}\left( {1{\rm{ }} + {\rm{ }}x} \right)\left( {1{\rm{ }} - {\rm{ }}x} \right)({x^4} + \\{x^3} + {\rm{ }}{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1)({x^4} - {\rm{ }}{x^3} + {\rm{ }}{x^2} - \\x + {\rm{ }}1)\left( {{x^{21}} + {x^{11}} + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right)\end{array}$

We can see that the reduced form is x21 + x11 + x +1. By applying the Euclidean division algorithm to x21 + x11 + x + 1 and Eq.(4), the remainder polynomials are

$\begin{array}{c}{x^{19}} - {\rm{ }}{x^{18}} + {\rm{ }}{x^{17}} - {\rm{ }}{x^{16}} + {\rm{ }}{x^{12}} - {\rm{ }}{x^{11}} + {\rm{ }}{x^{10}} - {\rm{ }}{x^8} + \\{x^7} - {\rm{ }}{x^6} + {\rm{ }}{x^5} - {\rm{ }}{x^4} + {\rm{ }}{x^2} - {\rm{ }}x{\rm{ }} + {\rm{ }}1\\{x^{17}} - {\rm{ }}{x^{14}} + {x^{10}} + {\rm{ }}{x^5} - {\rm{ }}{x^4} + {\rm{ }}1\\ - {x^{15}} + {\rm{ }}{x^{14}} - {\rm{ }}{x^8} + {\rm{ }}{x^6} - {\rm{ }}{x^5}\\ - {x^9} - {\rm{ }}{x^4} + {\rm{ }}1\\ - {x^8} - {\rm{ }}{x^5} + {\rm{ }}{x^4} + {\rm{ }}x{\rm{ }} - {\rm{ }}1\\{x^6} - {\rm{ }}{x^5} - {\rm{ }}{x^4} - {\rm{ }}{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1\\ - 4{x^5} - {\rm{ }}2{x^4} + {\rm{ }}4x{\rm{ }} + {\rm{ }}1\\ - \left( {1/4} \right){x^4} - {\rm{ }}\left( {1/4} \right)x{\rm{ }} + {\rm{ }}5/8\\4{x^2} - 4x{\rm{ }} - {\rm{ }}4\\ - x{\rm{ }} + {\rm{ }}1/8, - 71/16\end{array}$

Obviously, if p=71, then the remainder -71/16 is equal to zero in F71. When pP35\{71}, -71/16 cannot equal zero in Fp. Then the basic equation has no solution in Fp, pP35 apart from p = 71.

2.2.3 Case (t, 3t) Under Tables 1 and 2, the modified basic equation 1+α5t+7-α20t-α20t+7 can be modified as 1 + x -x11-x25. This equation can be factorized as:

$\begin{array}{l}1{\rm{ }} + {\rm{ }}x{\rm{ }} - {\rm{ }}{x^{11}} - {\rm{ }}{x^{25}} = {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}x} \right)({x^4} + {\rm{ }}{x^3} + {\rm{ }}{x^2}\\ + x{\rm{ }} + {\rm{ }}1){\rm{ }}\left( {{x^{20}} + {\rm{ }}{x^{15}} + {\rm{ }}{x^{10}} + {\rm{ }}{x^6} + {\rm{ }}{x^5} + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right)\end{array}$

It is clear that the reduced form is x20+ x15+x10+ x6 + x5+ x + 1. By applying the Euclidean division algorithm to x20+x15+x10+x6 + x5+ x + 1 and Eq.(4), the remainder polynomials are x17-x16+ x12-x11+ x7-x6+ x3-x + 1, x16 + x11 + x6 -x3 + x, x4 -x2 + 1, -2x3 + x2 + 2x -2, (1/4)x2-(1/2)x + 1/2, 4.

Since all remainder polynomials are not equal to zero in Fp, pP35, the basic equation has no solution in Fp.

2.2.4 Case (t, -2t) With Tables 1 and 2, the modified basic equation 1+α5t+7-α-5t-α-5t+7 can be modified as 1+x-x6-x20. This equation can be factorized as:

$\begin{array}{l}1{\rm{ }} + {\rm{ }}x{\rm{ }} - {\rm{ }}{x^6} - {\rm{ }}{x^{20}} = {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}x} \right)({x^4} + {\rm{ }}{x^3} + {\rm{ }}{x^2} + \\x{\rm{ }} + {\rm{ }}1){\rm{ }}\left( {{x^{15}} + {\rm{ }}{x^{10}} + {\rm{ }}{x^5} + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right)\end{array}$

Obviously, the reduced form is x15+x10+x5+x+ 1. By applying the Euclidean division algorithm to x15+ x10+ x5+ x + 1 and Eq.(4), the remainder polynomials are x5 -x3+ 1, -3x4+ 3x3-x2+ 3x -1, -(1/3)x3 + (2/3)x2 + (2/3)x + 2/3, -13x2 -9x -7, (38/169)x + 31/169, -11 999/1 444 (=(71×132)/1 444).

We can see that the remainder -11 999/1 444 equals zero in F71. When pP35\{71}, the remainders cannot equal zero in Fp, pP35\{71}. So the basic equation has no solution in Fp, pP35\{71}.

2.2.5 Case (t, -3t) Based on Tables 1 and 2, the modified basic equation 1+α5t+7-α-10t-α-10t+7 becomes polynomial equation in x, i.e., 1 + x -x5-x26. This equation can be factorized as:

$\begin{array}{l}1{\rm{ }} + {\rm{ }}x{\rm{ }} - {\rm{ }}{x^5} - {\rm{ }}{x^{26}} = {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}x} \right){\rm{ }}\left( {1{\rm{ }} + {\rm{ }}x} \right){\rm{ }}({x^4} + {\rm{ }}{x^3} + \\{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1){\rm{ }}({x^{20}} - {\rm{ }}{x^{19}} + {\rm{ }}{x^{18}} - {\rm{ }}{x^{17}} + {\rm{ }}{x^{16}} + \\{x^{10}} - {\rm{ }}{x^9} + {\rm{ }}{x^8} - {\rm{ }}{x^7} + {\rm{ }}{x^6} + {\rm{ }}1)\end{array}$

It is obvious that the reduced form is x20-x19 + x18 -x17+ x16+ x10 -x9 + x8 -x7+ x6 + 1. By applying the Euclidean division algorithm to x20-x19 + x18 -x17+ x16+ x10 -x9 + x8 -x7+ x6 + 1 and Eq.(4), the remainder polynomials are

$\begin{array}{c}{x^{17}} - {x^{16}} + {x^{12}} - {x^{11}} + {x^{10}} - {x^9} + {x^7} - {x^6} + \\{x^5} - {x^4} + {x^2} - x + 1\\{x^{16}} - {x^{15}} + {x^{14}} - 2{x^{13}} + 2{x^{12}} - {x^{11}} + {x^{10}} - \\{x^8} + {x^7} + {x^4} - 2{x^3} + {x^2} - x + 1 - \\{x^{15}} + 2{x^{14}} - 2{x^{13}} + 2{x^{12}} - 2{x^{11}} + {x^{10}} - {x^8} + \\{x^7} - {x^6} + {x^4} - {x^3} + 2{x^2} - 2x + 1\\{x^{14}} - 2{x^{13}} + 2{x^{12}} - 2{x^{11}} + 2{x^{10}} - {x^9} - {x^8} + \\{x^7} - {x^6} + {x^5} + {x^4} - {x^3} + {x^2} - 2x + 2\\ - {x^9} + {x^5} + 1\\{x^8} - {x^7} + 2{x^6} - {x^5} - {x^4} + {x^3} - {x^2} + x - 1\\{x^7} + {x^6} - {x^5}\\5{x^6} - 3{x^5} - {x^4} + {x^3} - {x^2} + x - 1\\(4/25){x^5} + (3/25){x^4} - (3/25){x^3} + (3/25){x^2} - \\(3/25)x + 8/25\\(125/16){x^4} - (125/16){x^3} + (125/16){x^2} - \\(225/16)x + 25/2\\(16/125){x^2} + (16/125)x - 16/125\\( - 975/16)x + 175/4\\1\;136/38\;025( = 71 \times {2^4}/38\;025)\end{array}$

It is easy to know that the remainder 1 136/38 025 equals zero in F71. When pP35\{71}, then 1 136/38 025 cannot equal zero in Fp. So the basic equation has no solution in Fp, pP35 apart from p=71.

By following the conclusion drawn in Section 2.1, it can be also concluded that Tanner (5, 7) QC LDPC code with length 497(=71×7) has girth 6, and that Tanner (5, 7) QC LDPC codes with length 7p have girth at least 8, pP35\{71}.

2.3 8-cycles All 8-cycles can be partitioned into five equivalent classes. As mentioned in Sections 2.1 and 2.2, by applying the Euclidean algorithm to the reduced form of basic equation and Eq.(4), we check the existence of the solutions for the basic equation, and obtain the candidate girth values g. To save space, all equivalent classes of 8-cycles and their corresponding modified basic equations are tabulated in Table 3 and the candidate girth values g are recorded in Table 4.

表 3
Table 3 All equivalent classes of 8-cycles and their modified basic equations Equivalent class Modified basic equation

(0, 1, 0, 1) 1-α5t+α5(t+u)-α5(t+u+v)

(0, 1, 0, 2) 1-α5t+(1+α7)(α5(t+u)-α5(t+u+v))

(0, 1, 0, 4) 1-α5t+(1+α7+α14+α21)·(α5(t+u)-α5(t+u+v))

(0, 1, 2, 3) 1+α5t+7+α5(t+u)+14-(1+α7+α14)α5(t+u+v)

(0, 1, 3, 2) 1+(1+α7)(α5t+7-α5(t+u+v))-α5(t+u)+14



Table 3 All equivalent classes of 8-cycles and their modified basic equations



表 4
Table 4 All cases (t, u, v) and candidate girth values No. (t, u, v) (0, 1, 0, 2) (0, 1, 0, 4) (0, 1, 2, 3) (0, 1, 3, 2)

1 (t, t, t) 71 71 211

2 (t, t, 2t) 421 701 421 421

3 (t, t, 3t) 71, 211 211 421 71

4 (t, t, -t) 911

× (t, t, -2t)

6 (t, t, -3t) 71 71, 211

7 (t, 2t, t) 71 701 281

8 (t, 2t, 2t) 211 71, 211

9 (t, 2t, 3t) 71, 211 211 211 421

10 (t, 2t, -t) 911 211

11 (t, 2t, -2t) 7 211 211, 5 531 71 5 531

× (t, 2t, -3t)

13 (t, 3t, t) 71 2 311 281

14 (t, 3t, 2t) 421 701 71 71

× (t, 3t, 3t)

16 (t, 3t, -t) 71, 911 491

17 (t, 3t, -2t) 1 051 211 281 71

18 (t, 3t, -3t) 237 301 421, 4 271 71 4 271

19 (t, -t, t)

20 (t, -t, 2t) 354 551 4 271 4 271

21 (t, -t, 3t) 211, 421 5 531 5 531

22 (t, -t, -t) 911

23 (t, -t, -2t) 71, 7 211 5 531 5 531

24 (t, -t, -3t) 237 301 4 271 71 4 271

× (t, -2t, t)

26 (t, -2t, 2t) 354 551 4 271 71 4 271

27 (t, -2t, 3t) 2 311 281

28 (t, -2t, -t) 911 491

29 (t, -2t, -2t) 1 051 211 71 421

30 (t, -2t, -3t) 631 701 281 421

31 (t, -2t, t) 71 211 71, 211

× (t, -2t, 2t)

33 (t, -3t, 3t) 211, 421 5 531 71 5 531

34 (t, -3t, -t) 911 211

35 (t, -3t, -2t) 701 71, 281

36 (t, -3t, -3t) 631 701 211 71



Table 4 All cases (t, u, v) and candidate girth values



Note that all cases of (t, u, v) are listed in Table 4, and the cases, labeled by "×", are invalid (t+u+v=0 (mod 7)). By eliminating those polynomials which do not equal zero in Fp, pP35, the reduced forms of the modified basic equations are obtained (Here we omit to record them). After applying the Euclidean algorithm to the reduced forms of basic equations and Eq.(4), we check if there exist the remainder polynomials which are equal to zero in Fp, and obtain the candidate girth values g, as listed in Table 4. Since the equivalent class (0, 1, 0, 1) has no candidate girth value, then we do not record it in Table 4. And its valid cases (t, u, v), as listed in Table 4, are the same as the other four equivalent classes. Based on the conclusions in Sections 2.1 and 2.2, we can see from Table 4 that Tanner (5, 7) QC LDPC codes with length 7p have girth 8, pG8, where G8 = {211, 281, 421, 491, 631, 701, 911, 1 051, 2 311, 4 271, 5 531, 7 211, 237 301, 354 551}.

2.4 10-cycles All 10-cycles are divided into nine equivalent classes. For each equivalent class, its corresponding modified basic equation is tabulated in Table 5. And all cases of (t, u, v, w) and the corresponding candidate girth values g are recorded in Table 6.

表 5
Table 5 All equivalent classes of 10-cycles and their modified basic equations Equivalent class Modified basic equation

(0, 1, 2, 3, 4) 1+α5t+7+α5(t+u)+14+α5(t+u+v)+21+α5(t+u+v+w)+28

(0, 1, 2, 4, 3) 1+α5t+7+(1+α7)α5(t+u)+14-α5(t+u+v)+21-(1+α7+α14)α5(t+u+v+w)

(0, 1, 2, 4, 3) 1+(1+α7)α5t+7-α5(t+u)+14+(1+α7)α5(t+u+v)+14+α5(t+u+v+w)+28

(0, 1, 4, 2, 3) 1+(1+α7+α14)α5t+7-(1+α7)α5(t+u)+14+α5(t+u+v)+14-(1+α7+α14)α5(t+u+v+w)

(0, 1, 0, 2, 3) 1-α5t+(1+α7)α5(t+u)+α5(t+u+v)+14-(1+α7+α14α5(t+u+v+w)

(0, 1, 0, 2, 4) 1-α5t+(1+α7)α5(t+u)+(1+α7)α5(t+u+v)+14+α5(t+u+v+w)+28

(0, 1, 0, 3, 4) 1-α5t+(1+α7+α14)α5(t+u)+α5(t+u+v)+21+α5(t+u+v+w)+28

(0, 1, 2, 0, 1) 1+α5t+7-(1+α7)α5(t+u)+α5(t+u+v)-α5(t+u+v+w)

(0, 1, 3, 0, 1) 1+(1+α7)α5t+7-(1+α7+α14)α5(t+u)+α5(t+u+v)-α5(t+u+v+w)



Table 5 All equivalent classes of 10-cycles and their modified basic equations



表 6
Table 6 All cases (t, u, v, w) and associated candidate girth values No. (t, u, v, w) (0, 1, 2, 3, 4) (0, 1, 2, 4, 3) (0, 1, 3, 2, 4) (0, 1, 4, 2, 3) (0, 1, 0, 2, 3) (0, 1, 0, 2, 4) (0, 1, 0, 3, 4) (0, 1, 2, 0, 1) (0, 1, 3, 0, 1)

1 (t, t, t, t) 43 261 71, 66 851 491 491 631 631 421

2 (t, t, t, 2t) 28 771 911 9 941 281 1 051 71

3 (t, t, t, 3t) 66 851 43 621 66 851 211 4 481 12 601 701 421

4 (t, t, t, -t) 701 5 741, 30 661 421 211 55 721

5 (t, t, t, -2t) 701 5 741 71 71, 207 061 71, 491, 911 71, 211, 911 3 011

× (t, t, 2t, -3t)

7 (t, t, 2t, t) 38 011 421, 164 431 38 011 211 631 71 71

8 (t, t, 2t, 2t) 701, 28 771 28 771 71, 701, 911 491 211 71, 211

× (t, t, 2t, 3t)

10 (t, t, 2t, -t) 71, 631 491 557 831 1 471 281 9 521 71 281, 491 71, 631, 701

11 (t, t, 2t, -2t) 421 19 391 30 941 281 701 421, 701 211, 4 621 55 511

12 (t, t, 2t, -3t) 71 71, 3 851 7 001 9 871 343 141 704 761 5 741 437 501 159 671

13 (t, t, 3t, t) 66 851 66 851 43 261 10 781 7 001 631 421

× (t, t, 3t, 2t)

15 (t, t, 3t, 3t) 421 71, 491 3 221 30 941 3 011 349 931 32 971 3 571 104 021

16 (t, t, 3t, -t) 1 471 491 71 21 701 911

17 (t, t, 3t, -2t) 71, 631 2 731 7 211 71, 281 71, 6 581 44 171 281, 51 521 13 931 281, 491

18 (t, t, 3t, -3t) 211 203 911 71, 211 211, 281 211 211 446 881 211, 1 051

19 (t, t, -t, t) 71 71, 911 237 301 354 551

20 (t, t, -t, 2t) 211 71 374 291 5 881 71, 211 11 411 3 361 211

21 (t, t, -t, 3t) 30 941 19 391 71, 491 71, 43 331 71, 281 421 631

× (t, t, -t, -t)

23 (t, t, -t, -2t) 701 71, 211, 421 71, 211 5 741 71, 3 361 71, 281 71, 211 911 911

24 (t, t, -t, -3t) 71 9 871 71 71, 3 851 71, 281 71, 421, 491 71, 43 331 71, 211 1 051

25 (t, t, -2t, t) 71 71, 211 71 71, 211, 911 141 961 71, 911 71, 911 9 521 71, 47 041, 162 821

26 (t, t, -2t, 2t) 211, 701 211, 701 211, 701 71 71, 7 211 71 71 9 268 631

27 (t, t, -2t, 3t) 491 491 71, 631 71, 4 831, 20 441 2 731 18 481 71 281, 18 061 23 632 351

28 (t, t, -2t, -t) 701 421 5 741 11 411 4 831 71 71, 1 471 211, 3 221

29 (t, t, -2t, -2t) 421 281 3 221 19 391 47 741 71 4 691 3 338 441 701, 3 851

30 (t, t, -2t, -3t) 211 211, 281 71 203 911 281, 974 411 911, 2 591 71, 491 71, 12 041 71, 1 471

× (t, t, -3t, t)

32 (t, t, -3t, 2t) 211 5 881 701, 18 481 71 4 691 299 671 211, 1 051 301 841 281, 421, 845 951

33 (t, t, -3t, 3t) 491 71, 4 831 4 271 491 763 771 10 151

34 (t, t, -3t, -t) 71, 631 1 471 71, 211 491 71, 281 631 71, 211 71, 491 3 361

35 (t, t, -3t, -2t) 71, 631 71, 281 71 2 731 631, 701 71, 211 403 621 2 801 7 561

36 (t, t, -3t, -3t) 911 28 771 911 4 481 12 601 71, 281 2 381, 8 821

37 (t, 2t, t, t) 164 431 164 431 211 71, 211 71, 211 8 821 4 201

38 (t, 2t, t, 2t) 38 011 71, 38 011 164 431 71 47 881 2 731 71, 281 71, 4 201

× (t, 2t, t, 3t)

40 (t, 2t, t, -t) 71 631, 15 204 111 8 681 71 211, 631 242 621

41 (t, 2t, t, -2t) 71 8 191 211

42 (t, 2t, t, -3t) 71 10 501 13 441 8 681 718 271 1 634 011 71, 281, 4 271 21 911 71, 242 621

43 (t, 2t, 2t, t) 28 771 71 71, 911 281, 421, 491 631 71 4 201 8 821

× (t, 2t, 2t, 2t)

45 (t, 2t, 2t, 3t) 491 71, 631 71 71, 491 631, 3 211 281 50 051 71, 4 271 10 151

46 (t, 2t, 2t, -t) 71, 631 7 211 211, 281 2 731 4 831 11 411 71, 281 211, 281 7 561

47 (t, 2t, 2t, -2t) 374 291 2 521 71 71, 16 661 845 951

48 (t, 2t, 2t, -3t) 71, 631 557 831 71 281, 491 71, 2 731 24 781 71, 421 2 381 3 361

× (t, 2t, 3t, t)

50 (t, 2t, 3t, 2t) 281 6 581 2 591 71, 1 051 71, 5 741, 18 691 278 741 421, 631 71, 437 501 159 671

51 (t, 2t, 3t, 3t) 71, 631 211, 281 211, 7 211 71 211 71, 281 3 011 71 71

52 (t, 2t, 3t, -t) 15 121 71 71, 421 4 481 2 591 71, 701 9 311 281, 491 631, 701

53 (t, 2t, 3t, -2t) 15 121 491, 11 621 4 481 16 451 631 4 621 211, 1 471 211 71, 211

54 (t, 2t, 3t, -3t) 71 71, 9 871 154 981 211 71, 211 211, 4 621 55 511

55 (t, 2t, -t, t) 2 311 67 061 2 521 54 881 71, 5 881 281, 285 251

56 (t, 2t, -t, 2t) 15 121 701 9 941 421, 701 911 71, 9 521 281, 2 381 71 191 491, 296 731

57 (t, 2t, -t, 3t) 15 121 71 4 481 71, 421 28 001 421 71, 211, 701 192 431

58 (t, 2t, -t, -t) 701 71 5 741 30 661 71, 17 921 33 181 491, 3 851, 8 191 33 811 13 931

× (t, 2t, -t, -2t)

60 (t, 2t, -t, -3t) 71, 631 71, 1 471 491 71, 211 67 271 19 181 71, 421 911

61 (t, 2t, -2t, t) 211 71, 2 731 71, 281 4 201 491 281 71 71

62 (t, 2t, -2t, 2t) 71 4 271 281, 491, 1 051 281, 491 5 531 71 5 531 211, 421 7 211

63 (t, 2t, -2t, 3t) 491 4 271 71, 4 831 71 71, 281 71, 211 631

× (t, 2t, -2t, -t)

65 (t, 2t, -2t, -2t) 421 281 19 391 3 221 10 711 491, 4 621 1 051 71, 211, 491

66 (t, 2t, -2t, -3t) 2 311 2 521 67 061 71, 491, 1 051 57 751 2 731 16 381 911 911

67 (t, 2t, -3t, t) 71 4 271 71 281, 491 281, 2 591 4 271 4 271 71, 24 151 71, 27 136 621

68 (t, 2t, -3t, 2t) 71 152 041 13 441 71 21 211 10 501 71, 491 71, 7 001 491, 2 311

69 (t, 2t, -3t, 3t) 71 281, 491 71, 4 271 4 271 71 71 8 553 581 71, 112 771

70 (t, 2t, -3t, -t) 71 9 871 3 851 6 581 3 851 1 773 241 1 388 381

71 (t, 2t, -3t, -2t) 2 311 2 521 71, 491 67 061 1 051 71 18 481 393 961 491, 15 541, 24 151

72 (t, 2t, -3t, -3t) 211 2 521 71, 18 481 701, 374 291 280 351 71, 631 71, 13 441 71, 75 181 71, 348 461

73 (t, 3t, t, t) 43 261 66 851 631 631 491 71

× (t, 3t, t, 2t)

75 (t, 3t, t, 3t) 211 19 531 4 201 11 971 4 271, 867 371 281, 3 571 71, 6 301 3 011

76 (t, 3t, t, -t) 211 71, 281 71, 2 731 11 971 55 721 71

77 (t, 3t, t, -2t) 15 121 421, 701 211, 701 491 71, 281 911 421 631 421

78 (t, 3t, t, -3t) 15 121 7 211 9 941 491 42 491 71, 631 211 701 421

× (t, 3t, 2t, t)

80 (t, 3t, 2t, 2t) 211, 421 4 691 71 71, 211 63 841, 318 641 1 180 901 281, 453 461 71, 211 71, 211, 1 051

81 (t, 3t, 2t, 3t) 15 121 491, 9 941 701 7 211 126 211 11 621 125 231 911

82 (t, 3t, 2t, -t) 15 121 701 701 9 941 71 71, 211 281 33 811 281, 491

83 (t, 3t, 2t, -2t) 281 12 391 71, 1 051 273 001 701 71, 701 71, 631 421, 104 021

84 (t, 3t, 2t, -3t) 71, 631 71, 211 1 471 71 71 71, 281 211 701 71, 421

85 (t, 3t, 3t, t) 211, 701, 4 481 71, 211, 701 71, 1 471 211, 7 351 71, 9 268 631

86 (t, 3t, 3t, 2t) 211 71, 211 4 691 203 911 71, 281 71, 491 2 591 701, 3 361 71, 1 471

87 (t, 3t, 3t, 3t) 701 30 661 71 71, 631 5 741 19 531 211, 3 221

88 (t, 3t, 3t, -t) 421 30 941 71, 491 19 391 71, 421 3 851 6 581 421, 2 311 701, 3 851

89 (t, 3t, 3t, -2t) 491 4 271 71 71, 4 831 130 621 5 881 4 201 11 621 23 632 351

90 (t, 3t, 3t, -3t) 71 71, 911 71, 911, 12 041 71 71 71, 1 229 211 71, 47 041

91 (t, 3t, -t, t) 211 71, 281 11 971 71, 2 731 71, 16 661 845 951

92 (t, 3t, -t, 2t) 71, 631 7 211 2 731 211, 281 71, 211 71 3 361 71, 4 201 8 821

93 (t, 3t, -t, 3t) 211 3 011 71, 701 2 801 281, 911, 2 381 3 361

94 (t, 3t, -t, -t) 71, 631 71 71, 211 71, 557 831 71, 281 65 101 71, 211 211, 281 7 561

95 (t, 3t, -t, -2t) 71 13 441 10 501 152 041 74 761 22 751 71, 4 271 4 691, 10 151

× (t, 3t, -t, -3t)

97 (t, 3t, -2t, t) 15 121 71, 421 71 16 451 631 3 851 491 1 051 71, 211

98 (t, 3t, -2t, 2t) 281 211, 12 391 273 001 71, 1 051 211 211 71, 829 151 159 671

99 (t, 3t, -2t, 3t) 491, 15 121 11 621 16 451 4 481 46 831 701 39 551 71, 281 631, 701, 3 221

100 (t, 3t, -2t, -t) 71 7 001 3 851 154 981 211, 281 274 471 6 091 85 751 55 511

× (t, 3t, -2t, -2t)

102 (t, 3t, -2t, -3t) 71, 631 71, 281 2 731 71 71 71 71 71

103 (t, 3t, -3t, t) 281 273 001 12 391 2 591 2 311 16 451 4 201 1 051 71, 211

104 (t, 3t, -3t, 2t) 2 311 54 881 67 061 71, 211, 4 831 21 211 1 051 71 71

105 (t, 3t, -3t, 3t) 71 71, 911 71, 911 4 271 4 271 71, 911 911

× (t, 3t, -3t, -t)

107 (t, 3t, -3t, -2t) 211 211, 281 203 911 71 491 71, 281 281 631 421

108 (t, 3t, -3t, -3t) 211 2 521 421, 374 291 18 481 26 251 4 481

109 (t, -t, t, t) 71 71, 911 71 522 061 211, 2 521 522 061 71

110 (t, -t, t, 2t) 71 281, 421, 491 4 271 71 211, 2 731 128 591 211, 2 731 71 71

111 (t, -t, t, 3t) 71, 211, 701 211, 701 71, 1 051 71, 1 471 71, 1 051 71

× (t, -t, t, -t)

113 (t, -t, t, -2t) 71 71, 911 71 7 841 71, 141 961 7 841 71 71

114 (t, -t, t, -3t) 71 4 271 281, 491, 16 451 71 39 761 281, 2 591 39 761 71 71

115 (t, -t, 2t, t) 2 311 491 2 521 4 831 687 541 71, 701 1 471, 343 561 71

116 (t, -t, 2t, 2t) 211 4 691 71, 211 71 6 091 1 542 031 701 701 421

117 (t, -t, 2t, 3t) 281 6 581 71, 1 051 2 591 491 71, 17 291 71, 281 211 71, 211

118 (t, -t, 2t, -t) 71 71 71, 911 495 461 631, 2 591 631, 1 051 911

× (t, -t, 2t, -2t)

120 (t, -t, 2t, -3t) 211 71, 5 881 71 18 481 1 253 071 17 011 423 431

121 (t, -t, 3t, t) 19 531 11 971 4 201 71, 631 440 651 71 71

122 (t, -t, 3t, 2t) 491 71, 631 491 71 211, 4 621 71, 2 381 71, 370 441

123 (t, -t, 3t, 3t) 421 71, 491 30 941 3 221 491, 701 3 221 281, 491 211 71, 211

124 (t, -t, 3t, -t) 2 311 4 831 54 881 71, 211 217 351 211, 1 197 281 281, 421 911

125 (t, -t, 3t, -2t) 71 71 4 271 71, 271, 491 2 591, 2 691 011 1 747 271 281, 421, 631 5 531 7 211

× (t, -t, 3t, -3t)

× (t, -t, -t, t)

128 (t, -t, -t, 2t) 71 71 71, 911 837 271 211, 2 381 421 4 271 354 551

129 (t, -t, -t, 3t) 18 481 2 521 5 881 911 36 541 211, 281, 3 221

130 (t, -t, -t, -t) 701 71 71, 211, 30 661 5 741 211, 491 147 211 2 311, 134 401 911

131 (t, -t, -t, -2t) 71 71, 7 001 154 981 3 851 211, 110 951 71, 19 531 71, 8 681 211 1 051

132 (t, -t, -t, -3t) 421 71, 3 221 71, 281 491 211, 491 385 631 71, 1 051 701 631

133 (t, -t, -2t, t) 701 5 741 421 71 71, 421 34 231 9 871 71

× (t, -t, -2t, 2t)

135 (t, -t, -2t, 3t) 71 71 281, 491 4 271 211, 491, 701, 3 221 71, 185 221 2 102 171 5 531 211, 421

136 (t, -t, -2t, -t) 71 13 441 152 041 10 501 71, 701 211, 2 731 421, 491 911

137 (t, -t, -2t, -2t) 71, 491 71 71, 4 271 71, 631 71, 37 871 71, 211 2 318 471 71 71, 281

138 (t, -t, -2t, -3 t) 281 2 591 273 001 6 581 211, 421 281, 4 201 325 921 701 631

139 (t, -t, -3t, t) 71 10 501 8 681 13 441 71, 421 435 401 76 231 71

140 (t, -t, -3t, 2t) 71 491, 3 851 9 871 7 001 71, 14 771 421, 631 71, 631 701 421

× (t, -t, -3t, 3t)

142 (t, -t, -3t, -t) 211 4 201 71, 2 731 631, 19 531 491 281, 3 571 18 131 911

143 (t, -t, -3t, -2t) 211 71 211, 281 4 691 48 371 532 421 79 801 211 1 051

144 (t, -t, -3t, -3t) 211, 701 211, 701 589 471 701, 35 141 2 153 551 4 271 237 301

145 (t, -2t, t, t) 71 71, 911 71 71 211, 2 521 211, 701 211, 701, 25 411 71, 6 091 281, 4 691

146 (t, -2t, t, 2t) 71, 211 11 971 19 531 71, 281 4 481 13 441 71, 631 281, 491 211, 281

147 (t, -2t, t, 3t) 281 71, 1 051 6 581 71, 12 391 421, 4 621 211, 4 691 71 443 591 211, 1 051, 2 381

148 (t, -2t, t, -t) 71 71, 911 71, 16 381 281, 4 691

149 (t, -2t, t, -2t) 211 2 731 4 201 71, 281 281 19 531 5 741 71, 11 131 211, 281

150 (t, -2t, t, -3t) 281 273 001 2 591 12 391 211, 7 001 3 221 1 239 421 211, 421, 1 051

151 (t, -2t, 2t, t) 211 11 971 71, 281 19 531 280 351 491, 26 251 911 911

152 (t, -2t, 2t, 2t) 71 154 981 281 7 001 4 201 421, 2 311 631 421

153 (t, -2t, 2t, 3t) 211 71, 211 71, 211, 203 911 4 691 281 491, 97 441 491 71, 211 1 051

× (t, -2t, 2t, -t)

155 (t, -2t, 2t, -2t) 211, 701 211, 701 211, 701 4 271 4 271 354 551 237 301

156 (t, -2t, 2t, -3t) 71 152 041 13 441 71, 1 051 211 71 71

157 (t, -2t, 3t, t) 15 121 4 481 71 11 621 98 491 2 731 211, 281 911

158 (t, -2t, 3t, 2t) 15 121 9 941 7 211 421, 701 71 2 521 71, 701 211, 701 192 431

159 (t, -2t, 3t, 3t) 71, 631 71, 211, 281 71 7 211 71, 4 831 71, 15 541 33 369 71, 71 191 211, 296 731

160 (t, -2t, 3t, -t) 211 18 481 5 881 2 521 491, 1 471 71, 17 431 66 571 33 811 1 051, 13 931

× (t, -2t, 3t, -2t)

162 (t, -2t, 3t, -3t) 491 71, 4 831 491 4 271 71, 211, 5 881 285 251

163 (t, -2t, -t, t) 701 421 30 661 281, 491 71, 13 931

× (t, -2t, -t, 2t)

165 (t, -2t, -t, 3t) 2 311 4 831 71, 491 54 881 441 421 59 221 71, 491 421, 491 126 211, 285 251

166 (t, -2t, -t, -t) 71, 631 71 557 831 71, 211 20 231 110 321 3 361 21 701 8 821

167 (t, -2t, -t, -2t) 15 121 16 451 71, 11 621 71, 421, 701 211, 421, 701 2 311 127 261 71, 211 192 431

168 (t, -2t, -t, -3t) 15 121 491 7 211 421, 701 71, 1 051 71, 421 71, 421 12 041 296 731

169 (t, -2t, -2t, t) 71, 281 71 71, 211 421 45 361 911

170 (t, -2t, -2t, 2t) 421 19 391 281 30 941 211 211 71, 631 104 021

× (t, -2t, -2t, 3t)

172 (t, -2t, -2t, -t) 71, 631 71 211, 281 281 71, 211 71 71, 421 33 811 281, 491, 631

173 (t, -2t, -2t, -2t) 43 261 43 261 491 204 331 701 421

174 (t, -2t, -2t, -3t) 211 71 4 691 211, 281 71 71, 2 521 211, 281 71, 211 211, 1 051

175 (t, -2t, -3t, t) 15 121 7 211 491 9 941 118 861 71 20 161 13 931 281, 491

176 (t, -2t, -3t, 2t) 71, 631 557 831 491 71 1 471, 9 241 71 4 691 631 421

177 (t, -2t, -3t, 3t) 211 203 911 211, 281 71, 211 71, 701 71, 701 446 881 211, 1 051

178 (t, -2t, -3t, -t) 15 121 491 701 7 211 7 351 12 671 21 701 911

179 (t, -2t, -3t, -2t) 281 2 591 6 581 5 741, 273 001 71, 3 361 920 641 71, 5 881 3 571 104 021

× (t, -2t, -3t, -3t)

× (t, -3t, t, t)

182 (t, -3t, t, 2t) 2 311 71, 491 4 831 2 521 766 501 71, 7 841 262 781 21 911 71, 421, 242 621

183 (t, -3t, t, 3t) 15 121 4 481 11 621 71 281, 21 491 71 26 111 8 821 4 201

184 (t, -3t, t, -t) 2 311 71, 67 061 54 881 2 521 211, 631 71, 281, 242 621

185 (t, -3t, t, -2t) 15 121 71, 421 16 451 71 71, 34 511 3 361 7 351 71, 281 4 201

186 (t, -3t, t, -3t) 211, 164 431 38 011 71, 211 421 1 471

187 (t, -3t, 2t, t) 71 71, 281, 491 71 4 271 128 591 281, 491 281, 491 3 439 801 71, 112 771

188 (t, -3t, 2t, 2t) 71 154 981 1 051, 7 001 71, 211 16 451 3 221 7 001 4 831 1 388 381

189 (t, -3t, 2t, 3t) 71 8 681 10 501 71, 211 4 201 5 881 1 022 141 491, 2 311

190 (t, -3t, 2t, -t) 211 71 5 881 374 291 71, 281 71 4 831, 6 791 4 649 261 71, 348 461

191 (t, -3t, 2t, -2t) 71 4 271 281, 491, 701 491 71 71 71 898 661 27 136 621

192 (t, -3t, 2t, -3t) 2 311 54 881 4 831 67 061 211 71, 491 10 501 4 567 151 491, 15 541

193 (t, -3t, 3t, t) 281 71, 1 051 12 391 6 581 71 47 741 10 711 421 631

194 (t, -3t, 3t, 2t) 71 8 681 1 051 10 501 631 130 621 71, 281 911 911

195 (t, -3t, 3t, 3t) 701 30 661 71 281 281 71 71

× (t, -3t, 3t, -t)

197 (t, -3t, 3t, -2t) 491 491 71, 4 831 71, 631 421, 16 381 1 051 57 751 71

198 (t, -3t, 3t, -3t) 71 281, 491, 2 591 4 271 4 271 5 531 71, 421 5 531 7 211 211, 421

199 (t, -3t, -t, t) 71 71 8 681 152 041 763 771 10 151

200 (t, -3t, -t, 2t) 71, 631 491 1 471 557 831 911 71, 211 2 381 2 801 7 561

× (t, -3t, -t, 3t)

202 (t, -3t, -t, -t) 2 801 16 871 13 931 71, 491 3 361

203 (t, -3t, -t, -2t) 71, 211, 631 71 71, 281 71, 211 21 001 911, 25 411 71, 7 561 71, 281 8 821

204 (t, -3t, -t, -3t) 211 4 201 19 531 71, 2 731 71, 30 941 71, 211, 52 361 71, 12 251 301 841 281, 845 951

205 (t, -3t, -2t, t) 15 121 421, 701 491 701 71, 281 1 471 17 291 71, 211 192 431

206 (t, -3t, -2t, 2t) 211 374 291 71 2 521 71, 281, 491 13 931

207 (t, -3t, -2t, 3t) 71, 631 2 731 71, 281 7 211 22 051 11 831 71, 491 12 041 296 731

208 (t, -3t, -2t, -t) 15 121 16 451 71, 421 11 621 281 71, 631 14 071 21 701

209 (t, -3t, -2t, -2t) 491 71 71, 631 211, 4 271 281, 421, 701 71, 4 271 109 831 421, 491 211, 285 251

× (t, -3t, -2t, -3t)

211 (t, -3t, -3t, t) 491, 164 431 71, 38 011 281 71, 701 9 521 71 71, 281

212 (t, -3t, -3t, 2t) 71, 631 71, 211 71 1 471 71, 281 30 871 71, 33 461 71, 281 281, 631, 701

213 (t, -3t, -3t, 3t) 71 154 981 2 731, 9 871 701 701 829 151 159 671

214 (t, -3t, -3t, -t) 421 3 221 71, 491 281 71 361 901 137 131 85 751 55 511

× (t, -3t, -3t, -2t)

216 (t, -3t, -3t, -3t) 911 911 71, 28 771 10 781 211 7 001 1 051 71, 211



Table 6 All cases (t, u, v, w) and associated candidate girth values



Notice that just like the aforementioned, we list all cases of (t, u, v, w) in Table 6, where "×" stands for invalid cases (t + u + v + w = 0 (mod 7)). By eliminating those polynomials over Fp, which is not equal to zero, we can get the reduced forms of the modified basic equations. By applying the Euclidean algorithm to the reduced forms and Eq. (4), we check if there exists the remainder polynomial over Fp which is equal to zero, and obtain the candidate girth values g, tabulated in Table 6. Based on the conclusions drawn in Sections 2.1, 2.2, and 2.3, we can see from Table 6 that Tanner (5, 7) QC LDPC codes with length 7p have girth 10, pG10, where G10 = {1 471, 2 381, 2 521, 2 591, 2 731, 2 801, 3 011, 3 221, 3 361, 3 571, 3 851, 4 201, 4 481, 4 621, 4 691, 4 831, 5 741, 5 881, 6 091, 6 301, 6 581, 7 001, 7 351, 7 561, 7 841, 8 191, 8 681, 8 821, 9 241, 9 311, 9 521, 9 871, 9 941, 10 151, 10 501, 10 711, 10 781, 11 131, 11 411, 11 621, 11 831, 11 971, 12 041, 12 251, 12 391, 12 601, 12 671, 13 441, 13 931, 14 071, 14 771, 15 121, 15 541, 16 381, 16 451, 16 661, 16 871, 17 011, 17 291, 17 431, 17 921, 18 061, 18 131, 18 481, 18 691, 19 181, 19 391, 19 531, 20 161, 20 231, 20 441, 21 001, 21 211, 21 491, 21 701, 21 911, 22 051, 22 751, 24 151, 24 781, 25 411, 26 111, 26 251, 28 001, 28 771, 30 661, 30 871, 30 941, 32 971, 33 181, 33 461, 33 811, 34 231, 34 511, 35 141, 36 541, 37 871, 38 011, 39 551, 39 761, 42 491, 43 261, 43 331, 44 171, 45 361, 46 831, 47 041, 47 741, 47 881, 48 371, 50 051, 51 521, 52 361, 54 881, 55 511, 55 721, 57 751, 59 221, 63 841, 65 101, 66 571, 66 851, 67 061, 67 271, 71 191, 74 761, 75 181, 76 231, 79 801, 85 751, 97 441, 98 491, 104 021, 109 831, 110 321, 110 951, 112 771, 118 861, 122 921, 125 231, 126 211, 127 261, 128 591, 130 621, 134 401, 137 131, 141 961, 147 211, 152 041, 154 981, 159 671, 162 821, 164 431, 185 221, 192 431, 203 911, 204 331, 207 061, 217 351, 242 621, 262 781, 273 001, 274 471, 278 741, 280 351, 285 251, 296 731, 299 671, 301 841, 318 641, 325 921, 333 691, 343 141, 343 561, 348 461, 349 931, 361 901, 370 441, 374 291, 385 631, 393 961, 403 621, 423 431, 435 401, 437 501, 440 651, 441 421, 443 591, 446 881, 453 461, 495 461, 522 061, 532 421, 557 831, 589 471, 687 541, 704 761, 718 271, 763 771, 766 501, 829 151, 837 271, 845 951, 867 371, 898 661, 920 641, 1 022 141, 1 180 901, 1 197 281, 1 239 421, 1 253 071, 1 388 381, 1 542 031, 1 634 011, 1 747 271, 1 773 241, 2 102 171, 2 153 551, 2 318 471, 2 691 011, 3 338 441, 3 439 801, 4 567 151, 4 649 261, 8 553 581, 9 268 631, 23 632 351, 27 136 621}.

3 Conclusions In this paper, we analyzed the cycles of Tanner (5, 7) QC LDPC codes and divided the cycles of lengths 4, 6, 8, and 10 into sixteen equivalent classes. Based on these equivalent classes, we presented the basic equations over Fp, pP35, which have a primitive 35th unit root, and checked these equations have solutions. Then candidate girth values are derived. By summarizing the candidate girth values of all equivalent classes, the girth g of Tanner (5, 7) QC LDPC codes with length 7p for p being a prime with the form 35m+1 is obtained. That is, Tanner (5, 7) QC LDPC codes has girth 6 if p=71, the girth is 8 if pG8 (See Section 2.3), the girth is 10 if pG10 (See Section 2.4), and 12 otherwise. In other words, when p takes values in {6 791, 9 661, 11 551, 13 721, 14 281, 14 561, …}, Tanner (5, 7) QC LDPC codes with length 7p have girth 12.


References
[1] Gallager R G. Low Density Parity Check Codes. Cambridge: MIT Press, 1963, 4-62. (0)

[2] MacKay D J C, Neal R M. Near Shannon limit performance of low density parity-check codes. Electronics Letters, 1996, 32(18): 1645-1646. DOI:10.1049/el:19961141 (0)

[3] Tanner R. A recursive approach to low complexity codes. IEEE Transactions on Information Theory, 1981, 27(5): 533-547. DOI:10.1109/TIT.1981.1056404 (0)

[4] Lucas R, Fossorier M, Kou Y, et al. Iterative decoding of one-step majority logic decodable codes based on belief propagation. IEEE Transactions on Communications, 2000, 48(6): 931-937. DOI:10.1109/26.848552 (0)

[5] Xu H, Bai B. Superposition construction of q-ary LDPC codes by jointly optimizing girth and number of shortest cycles. IEEE Communications Letters, 2016, 20(7): 1285-1288. DOI:10.1109/LCOMM.2016.2564401 (0)

[6] Ryan W E, Lin S. Channel Codes: Classical and Modern. Cambridge: Cambridge University Press, 2009, 429-629. (0)

[7] Song S, Zhou B, Lin S, et al. A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields. IEEE Transactions on Communications, 2009, 57(1): 84-93. DOI:10.1109/TCOMM.2009.0901.060129 (0)

[8] Diao Q, Tai Y, Lin S, et al. LDPC codes on partial geometries: construction, trapping set structure, and puncturing. IEEE Transactions on Information Theory, 2013, 59(12): 7898-7914. DOI:10.1109/TIT.2013.2280640 (0)

[9] Kim S, No J, Chung H, et al. Quasi-cyclic low-density parity-check codes with girth larger than 12. IEEE Transactions on Information Theory, 2007, 53(8): 2885-2891. DOI:10.1109/TIT.2007.901193 (0)

[10] Gholami M, Samadieh M, Raeisi G. Column-weight three QC LDPC codes with girth 20. IEEE Communications Letters, 2013, 17(7): 1439-1442. DOI:10.1109/LCOMM.2013.052013.130474 (0)

[11] Gholami M, Nassaj A. Row and column extensions of 4-cycle free LDPC codes. IEEE Communications Letters, 2016, 20(1): 25-28. DOI:10.1109/LCOMM.2015.2497299 (0)

[12] Wang R, Li Y, Zhao H, et al. Construction of girth-eight quasi-cyclic low-density parity-check codes with low encoding complexity. IET Communications, 2016, 10(2): 148-153. DOI:10.1049/iet-com.2015.0056 (0)

[13] Tasdighi A, Banihashemi A, Sadeghi M. Efficient search of girth-optimal QC-LDPC codes. IEEE Transactions on Information Theory, 2016, 62(4): 1552-1564. DOI:10.1109/TIT.2016.2523979 (0)

[14] Zhang Y, Da X. Construction of girth-eight QC-LDPC codes from arithmetic progression sequence with large column weight. Electronics Letters, 2015, 51(16): 1257-1259. DOI:10.1049/el.2015.0389 (0)

[15] Xu H, Feng D, Luo R, et al. Construction of quasi-cyclic LDPC codes via masking with successive cycle elimination. IEEE Communications Letters, 2016, 20(12): 2370-2373. DOI:10.1109/LCOMM.2016.2608938 (0)

[16] Xu H, Feng D, Sun C, et al. Construction of LDPC codes based on resolvable group divisible designs. Proceedings of the 2015 International Workshop on High Mobility Wireless Communications (HMWC). Piscataway: IEEE, 2015. 111-115. DOI: 10.1109/HMWC.2015.7354346. (0)

[17] Zhang G, Sun R, Wang X. Construction of girth-eight QC-LDPC codes from greatest common divisor. IEEE Communications Letters, 2013, 17(2): 369-372. DOI:10.1109/LCOMM.2012.122012.122292 (0)

[18] Fossorier M P C. Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Transactions on Information Theory, 2004, 50(8): 1788-1793. DOI:10.1109/TIT.2004.831841 (0)

[19] Michael Tanner R, Michael R, Sridhara D, et al. A class of group-structured LDPC codes. Proceedings of International Symposium Communication Theory and Applications. CiteSeerX, 2001. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.8232&rep=rep1&type=pdf. (0)

[20] Kim S, No J S, Chung H, et al. On the girth of Tanner (3, 5) quasi-cyclic LDPC codes. IEEE Transactions on Information Theory, 2006, 52(4): 1739-1744. DOI:10.1109/TIT.2006.871060 (0)

[21] Gholami M, Mostafaiee F S. On the girth of Tanner (3, 7) quasi-cyclic LDPC codes. Transactions on Combinatorics, 2012, 1(2): 1-16. (0)

[22] Xu H, Bai B, Feng D, et al. On the girth of Tanner (3, 11) quasi-cyclic LDPC codes. Finite Fields and Their Applications, 2017, 46: 65-89. DOI:10.1016/j.ffa.2017.03.004 (0)


相关话题/On Girth Tanner (5 7) Quasi-Cyclic LDPC Codes