删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Microstructure and Mechanical Properties of AZ91D Magnesium Alloy Recycled from Scraps by Hot-press/

本站小编 哈尔滨工业大学/2019-10-23

Microstructure and Mechanical Properties of AZ91D Magnesium Alloy Recycled from Scraps by Hot-press/extrusion

Mao-Liang Hu1, Ze-Sheng Ji1, Xiao-Yu Chen1, Qu-Dong Wang2

(1.School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China;2.National Engineering Research Center for Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China)



Abstract:

A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research, a method for recycling AZ91D magnesium alloy scraps fabricated by hot press/extrusion was studied. Mechanical properties and microstructure of the recycled specimens were investigated. Microstructural analyses were performed by using the techniques of optical microscopy and scanning electron microscopy. Microstructural observations reveal that the recycled specimens consisted of fine grains when adopting the extrusion temperature of 400-450 ℃, the extrusion ratio of (25-100)∶1 and the extrusion rate of 010-020 mm/s. Ultimate tensile strength and elongation to failure increased with the increase of the extrusion temperature, the extrusion ratio and the extrusion rate, respectively. Recycled specimens reached the highest ultimate tensile strength of average 36147 MPa and the highest elongation to failure of average 1155% when adopting the hot press, the extrusion temperature of 400±5 ℃, the extrusion ratio of 100∶1 and the extrusion rate of 015 mm/s. The shape of bonding interface was tightly relation with the ultimate tensile strength. When the bonding interface formed continuous curves, the ultimate tensile strength decreased almost linearly with increasing the average width of the bonding interface. When the bonding interface formed discontinuous curves, the ultimate tensile strength increased almost linearly with the increase the proportion of the fine bonding length accounting for the measured interface length. Ultimate tensile strength of the recycled specimens could be calculated by using the forecastable equation.

Key words:  scraps  magnesium alloy  mechanical property  bonding interface

DOI:10.11916/j.issn.1005-9113.2014.01.017

Clc Number:

Fund:


相关话题/Microstructure and Mechanical Properties AZ91D