删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

哈尔滨工业大学仪器科学与工程学院研究生考研导师简介-崔继文

本站小编 Free考研网/2019-05-25

基本信息科学研究教育教学桃李满天申请发明专利论文著作
基本信息




教育经历
1994.09– 1998.07 哈尔滨工业大学威海分校机械电子工程专业攻读学士学位1998.09– 2000.07 哈尔滨工业大学航空宇航制造工程专业攻读硕士学位2000.09– 2005.03 哈尔滨工业大学光电信息技术与仪器工程学科攻读博士学位


工作经历
时间工作经历
1999/09 – 2000/08哈尔滨工业大学威海分校,见习助教
2002/03 – 2003/07哈尔滨工业大学自动化测试与控制系,助教
2003/07 – 2006/12哈尔滨工业大学,光电信息技术与仪器工程,讲师
2005/07 – 2005/12 德国物理联邦技术研究院,科研合作
2007/01 – 2011/12 哈尔滨工业大学,光电信息技术与仪器工程,破格副教授
2012/01 – 今 哈尔滨工业大学,光电信息技术与仪器工程,教授




主要任职
2006年–今 国家质检总局全国几何量工程参量计量技术委员会 委员2010年–今 中国计量测试学会计量仪器专业委员会(国家二级)委员2006年–2010年 中国计量测试学会几何量计量专业委员会(国家二级)委员2015年-今 中国计量测试学会理事会理事


奖项成果
2013.12 国家技术发明奖二等奖2011.8 全国发明展览会金奖2009.6 黑龙江省高等教育教学成果壹等奖2002.12 国防科技进步一等奖2008.12 中国仪器仪表学会奖学金-金国藩青年学子奖学金2008.1 黑龙江省科学技术成果奖2007.11 哈尔滨工业大学第二届青年教师教学基本功竞赛二等奖2007 哈尔滨工业大学2007年度院青年教师教学基本功竞赛一等奖


科研项目
作为项目负责人,主持国家自然科学基金青年科学基金项目,“基于双光纤共球耦合的微深内腔体尺度传感机理研究(**)”;作为项目负责人,主持国家自然科学基金青年科学基金项目,“基于光纤微焦准直的微内尺度传感机理研究(**)”;作为项目负责人,主持国家高技术研究发展计划(863计划)项目,“基于双光纤的微纳器件高深宽比表面测试方法研究(2008AA04Z308)”;作为项目负责人,主持国家高技术研究发展计划(863计划)项目,“超精密多维阵列深微/深小几何参数测量仪研制(2012AA040508)”;作为项目负责人,主持国家科技重大专项项目子课题“超精密加工与检测技术研究与平台搭建”作为主要研制者(第二负责人),带领人员完成了“深盲小孔孔径与形位校准技术”项目,主要研制微孔光学传感器与测试系统;作为主要研制者(第二负责人),带领人员完成了“挠性陀螺器件综合参数图像测量仪”项目,主要解决了图像的快速采集与多幅图像的并行处理技术;作为主要研制者(第二负责人),带领人员完成了“石英陀螺摆片综合参数图像测量仪”项目,主要解决了摆片边缘的动态采集与刚度评定技术;作为骨干研制人员,参加研制了“惯性器件非连续圆柱形状超精密测量仪”项目,主要负责激光直线监测基准系统的研制,完成了基于激光束漂移量反馈控制的光束准直系统;作为骨干研制人员,参加研制了“光纤传感器的研究”项目,主要负责光纤传感器工作原理及系统集成的研制,完成了基于能量式的光纤传感系统;作为骨干研制人员,参加研制了“非球任意曲面三维轮廓测量技术”项目,主要负责光学扫描传感器的研制,完成了基于差动像散原理的光电扫描传感器系统;作为骨干研制人员,参加研制了“大口径激光直写机”项目,主要负责激光检焦系统的研制,完成了激光直写过程中粗、精聚焦系统。


讲授课程
应用光学

简介:光学是一门古老而又发展极快的科学,她最大的特点就是信息色彩浓厚。从90年代后期开始,社会对有光学基础人才的需求就一直不断增加。21世纪,信息的发展、光学科学的技术发展速度、广度、及对其他科学的渗透和影响,对人类社会文明和进步的推动都会有非常光明的前景。现实和未来对光电、光学相关技术人才的需求,要求我们加强应用光学的教学。

传统习惯是把光学分成应用光学和物理光学两个部分,应用光学简言之就是成像的科学。成像是光学基础的基础,这就是为什么同光学相关的专业一定把应用光学当作重头技术基础课来对待的原因。学生通过本门课程的学习,对现有光学系统应具有分解、分析的能力,即把现有的光学设备仪器分解成基本功能元素,搞明白原理、相互关系和作用,加以应用。另一方面,学生应具有外形尺寸的结构设计、将基本元素组合集成为系统的能力。上述要求对于一般使用光学知识的专业已经够用,但是对于光电、光学类专业,本门课程只是基础。后续的系列光学类专业课程都要在此基础上继续学习。比如:物理光学、信息光学、视觉检测等。

招生信息
硕士招生:
主要方向一:微尺度传感技术

主要方向二:几何量精密测量及量值溯源技术



博士招生:
主要方向一:超精密仪器技术

主要方向二:超精密光电检测技术

硕博士
序号姓名入学年份所获学位论文题目毕业去向联系方式备注
1康文静
2003
工学博士
运动相机平台下动目标自动跟踪方法研究
哈工大威海分校
kangwj@163.com


2黄金灿
2003
工学硕士
基于序列图像的超分辨率图像复原技术研究


优秀硕士毕业生,金牌

3杨振
2003工学硕士
基于整数小波的图像无损压缩技术研究




4敖磊
2004
工学博士
基于靶标反馈的自准直光束漂移抑制技术
航天科工卫星技术有限公司
ao_lei@126.com


5周艳
2004工学硕士
基于海天背景的靶船运动模型建立及仿真技术研究




6候滨可
2005工学博士基于反射式合作目标的编队小卫星基线指向激光测量技术
北京通信与跟踪研究所
houbinke@gmail.com


7王飞
2005工学博士
基于微焦准直的微深内腔尺度超精密测量方法研究
中科院长春光机所
wangfeichn@sohu.com


8国天娇
2005工学硕士
基于学习的单帧图像超分辨率算法研究
宝洁北京客户生意发展部
guotianjiao1983@hotmail.com


9林向阳
2006
工学硕士
空中目标与背景的红外图像仿真技术研究




10石倩
2006
工学硕士
基于衍射光学元件的激光准直透镜设计
中兴通讯



11刘洋
2007
工学硕士
基于运动模糊图像的超分辨率复原方法研究
广州宝洁有限公司天津西青分公司

liuyang**@163.com

liu.di@pg.com

优秀毕业生
12朱凡
2007
工学博士
基于共光路光漂移测量与同步补偿的激光自准直技术
留校
zf5016@126.com
优秀硕士毕业生,金牌

13张仲海
2007
工学硕士
双光纤共球耦合场能量分布研究
黑龙江农业工程职业学院
zzhssss@126.com


14林滇敏
2008工学硕士
双光纤耦合瞄准触发传感特性研究
斯坦福大学攻读博士学位



15宋传曦
2008
工学硕士
微小内尺度测量系统精度分析及若干关键问题研究
华为技术有限公司
songchanxi@huawei.com
优秀毕业生
16陈世丽
2008
工学硕士双光纤共球耦合传感器图像信号处理关键技术研究
野村综研(北京)系统集成有限公司
chenshilihgd@163.com


17李鹏
2009工学博士晶圆升降机构关键技术研究

lp19850@163.com


18张韬
2009工学博士非相干光-光纤耦合关键技术研究
留校sxh_00664@163.com


19李磊
2010工学硕士双光纤耦合瞄准触发传感特性机理研究
美国圣路易斯华盛顿大学攻读博士学位
ll_**@163.com
优秀硕士毕业生,金牌;黑龙江省优秀硕士论文

20赵雄浩
2010工学硕士
工件台运动补偿机构研究
上海卫星工程研究所
popzxh@126.com


21刘雪明
2010
工学硕士
超精密级二维工件台自标定算法研究
上海思源电气股份有限公司
Lxm.16715@sieyuan.com


22马伟
2010
工学博士
上海509研究所
jx04319@126.com


23王绍凯
2011工学博士
留校wsk**@hotmail.com


24张玉荣
2011工学硕士
基于水平集理论的拓扑优化方法研究
本校攻读博士学位yurong02@163.com
优秀硕士毕业生,金牌

25杨福铃
2011工学硕士基于光纤布拉格光栅的微尺度传感方法研究
北航攻读博士学位
lingling4635@126.com


26李哲
2011工学硕士磁浮式补偿器结构设计及特性研究
本校攻读博士学位
icewater12@163.com


27李俊英
2011工学硕士基于二维正交光纤微焦准直的微尺度传感方法研究
本校攻读博士学位
duckhome@163.com


28冯昆鹏
2012工学硕士
四芯光纤光栅探针微尺度传感机理研究
本校攻读博士学位
aifenglin@gmail.com
优秀硕士毕业生,金牌

29袁茂强
2012工学硕士
补偿系统三自由度位移测量及误差传递分析研究
上海航天设备制造总厂
yuanmaoqiang2008@163.com


30袁勇
2012工学硕士
双工件台宏微快速交接系统研究
中科院自动化研究所
yuanyong0706@126.com


31倪赫
2012工学硕士
基于驻波原理的虚拟探针关键技术研究
本校攻读博士学位
velvet_ni@126.com


32王敏
2012工学硕士
被动补偿系统动态特性研究
洛阳电光设备研究所
minminbugudan@163.com


33陈元争
2012工学硕士
光纤端面微结构出射光束远场准直关键技术研究
本校攻读博士学位
**@qq.com
优秀硕士毕业生,银牌

34赖厚湖
2013工学博士在读

laihouhu@hotmail.com


35李晨
2013工学硕士
平行度测量方法研究
罗克韦尔自动化
lichenno1@sina.com


36朱圣琪
2013工学硕士
自组装光纤光栅微尺度传感器关键技术研究
中兴通讯
zhushengqi0124@sina.com


37刘兆博
2013工学硕士
基于相位调制的干涉系统相干噪声抑制技术研究
中兴通讯
**@qq.com


38王博闻
2014工学硕士
高频响高分辨力位移传感器校准平台关键技术研究

航天五院宇航物资保障事业部
**@qq.com


39姜雪林
2014工学硕士
基于外差干涉的超高分辨力相干光谱分析系统研究
上海微电子
**@qq.com


40胡洋
2014工学硕士
基于受激瑞利散射的窄线宽可调谐光纤激光器研究
上海聚星仪器有限公司
**@qq.com
优秀硕士毕业生,金牌

41任文然
2014工学博士在读

**@qq.com


42党竑
2015工学博士在读

SireD_HIT@163.com

43赵士元
2015工学博士在读


**@qq.com


44马亚蕊
2015工程硕士
激光干涉粒子成像及信息提取方法研究
本校攻读博士学位**@qq.com


45蒋家成
2015工程硕士
基于严格耦合波理论的光栅结构参数测量方法
杭州安脉盛智能技术有限公司
**@qq.com


46孙逊
2016工学硕士在读
基于偏振低相干的光纤法珀传感器解调系统研究
留校读博
**@qq.com


47蒋栋
2016工学硕士在读
基于光纤分布式传感的表面应变测量技术研究
华为技术有限公司
bblong93@163.com


48张浩然
2016工程硕士在读
光纤光栅探针误差分析与视觉引导研究
联合汽车电子有限公司
**@qq.com


49吴伟东
2016工程硕士在读
高分辨力相干光谱分析方法研究
中兴通讯
**@qq.com


50文雪晴
2016工学硕士在读
互为基准双线平行度评定策略与测量方法研究
中航商发上海商用发动机制造有限公司
**@qq.com


51陈越2017工学博士在读

chenyue20088@126.com


52
王辉
2018
工学博士在读










专利



崔继文, 冯昆鹏, 姜雪林, 等. 基于双光纤光栅的二维微尺度测量装置及方法: 中国, **9 [P].2016-06-29. 崔继文, 冯昆鹏, 谭久彬, 等. 基于双芯光纤光栅的二维微尺度测量装置及方法: 中国, **8 [P].2016-06-08. 崔继文, 冯昆鹏, 姜雪林, 等. 基于四芯光纤光栅的三维微尺度测量装置及方法: 中国, **6 [P].2016-06-08. 崔继文, 冯昆鹏, 谭久彬, 等. 基于五芯光纤光栅的三维微尺度测量装置及方法: 中国, **0 [P].2016-06-08. 崔继文, 李磊, 杨福铃, 等. 基于光纤布拉格光栅的接触式温度无感三维探测传感器: 中国, **1 [P].2015-04-22. 谭久彬, 马伟, 崔继文, 金国良. 一种基于单/双驱动步进扫描的双工件台交换装置与方法, 2013.09.18, 中国, ZL**2.8 谭久彬, 马伟, 崔继文,金国良. 一种基于双导轨双驱的三节拍双工件台交换装置与方法, 2014.02.19, 中国, ZL**1.8 谭久彬, 马伟, 崔继文,金国良. 一种基于双导轨双驱动步进扫描的双工件台交换装置与方法, 2014.07.16, 中国, ZL**2.9 谭久彬, 王绍凯, 崔继文. 一种过梁式双导轨双驱步进扫描双硅片台交换装置与方法, 2013.09.18, 中国, ZL**7.5 谭久彬, 王绍凯, 崔继文,金国良. 过梁式单/双导轨双驱步进扫描双工件台交换装置与方法, 2014.03.05, 中国, ZL**5.9 谭久彬, 王绍凯, 崔继文. 一种过梁式步进扫描和三节拍双工件台交换装置与方法, 2014.11.12, 中国, ZL**2.3 崔继文, 杨福铃, 李磊, 李俊英, 谭久彬. 基于光纤布拉格光栅的微孔尺寸测量装置, 2014.08.20, 中国, ZL**1.7 崔继文, 李俊英, 李磊, 杨福铃, 谭久彬. 基于正交二维微焦准直的微孔测量装置与方法, 2014.07.16, 中国, ZL**6.9 崔继文, 李磊, 李俊英, 杨福铃, 谭久彬. 正交光路二维微焦准直与三维坐标传感器, 2014.10.15, 中国, ZL**2.5 谭久彬, 王飞, 崔继文. 微小焦点距離コリメーションに基づくマイクロキャビティ測定法および検出装置, 2013.09.20, 日本,特许第**号 谭久彬, 崔继文. ダブル光ファイバ接続を利用した微小空洞測定装置および方法, 2012.04.20, 日本, 特许第**号 Tan Jiubin, Zhu Fan, Cui Jiwen, Photoelectric autocollimation method and apparatus based on beam drift compensation, 2012.07.26, PCT, WO2012/097730A1 Tan Jiubin, Zhu Fan, Cui Jiwen, Translation mirror based beam steering mechanism with ultrahigh frequency response and high sensitivity, 2013.04.04, PCT, WO2013/044784A1 崔继文, 赵雄浩, 谭久彬. 光刻机工件台陀螺进动式主动稳定装置, 2014.02.12, 中国, ZL**9.4 崔继文, 赵雄浩, 谭久彬. 光刻机工件台磁预紧平衡定位系统, 2013.10.16, 中国, ZL**3.8 Tan Jiubin, Cui Jiwen. Micro-cavity Measurement Equipment and Method Based on Double Optical Fiber Coupling. PCT申请号:PCT/CN2006/001770,公开号:WO2007/030993A1 Tan Jiubin, Cui Jiwen. Micro-cavity measureing equipment and method based on double optical fibre coupling. 英国专利:GB** Tan Jiubin, Cui Jiwen. Micro-cavity measureing equipment and method based on double optical fibre coupling. 美国专利:US **B2 Tan Jiubin, Cui Jiwen. Micro-cavity measureing equipment and method based on double optical fibre coupling. 德国专利 申请号:**8.8,公开号:DE**8 T5 Tan Jiubin, Cui Jiwen. Micro-cavity measureing equipment and method based on double optical fibre coupling. 欧洲专利 申请号:**.4-2213 Tan Jiubin, Cui Jiwen. Micro-cavity measureing equipment and method based on double optical fibre coupling. 日本专利:特願2008-530300 谭久彬, 李结安, 崔继文, 朱凡. 基于双轴柔性铰链的高频响二维微角摆控制反射镜. 申请号:**2.1(2011.09.28),公开号:CN ** A(2012.01.18) 谭久彬,朱凡,崔继文. 偏振光角锥靶标共光路补偿的二维光电自准直方法与装置。申请号:**0.6(2011.01.19),公开号:CN ** A(2011.09.07) 谭久彬,朱凡,崔继文. 偏振光组合靶标共光路补偿的二维光电自准直方法与装置。申请号:**8.9(2011.01.19),公开号:CN ** A(2011.09.07) 谭久彬,朱凡,崔继文. 偏振光平面镜参考共光路补偿的二维光电自准直方法与装置。申请号:**6.X(2011.01.19),公开号:CN ** A(2011.09.07) 刘亚忠,崔继文,王绍腾. 步进扫描光刻机双台交换系统. 申请号:**6.9(2011.03.22),公开号:CN ** A(2011.07.13) 谭久彬, 王 飞, 崔继文. 基于二维微焦准直的微小内腔尺寸和三维坐标传感方法与装置。申请号:**3.7,公开号:CN** B 授权号:ZL**3.7(2011.02.02) 谭久彬, 王 飞, 崔继文. 基于一维微焦准直的微小内腔尺寸和二维坐标传感方法与装置。申请号:**4.1,公开号:CN ** B,授权号:ZL **4.1(2010.09.29) 谭久彬,崔俊宁,金国良,王飞, 崔继文. 基于双侧对称阻尼的静压气浮导轨。申请号:**7.8,公开号CN **C:授权号:ZL **7.8(2010.01.27) 谭久彬, 敖磊, 崔继文, 金国良, 杨文国. 漂移量靶标反馈的长距离二维偏振光电自准直装置和方法. 申请号:CN**3.1, 公开号: CN**,专利号:ZL**3.1(2007.9.12) 谭久彬, 崔继文. 双光纤耦合接触式微测量力瞄准传感器. 申请号:CN**4.5, 公开号:CN**,专利号:ZL**4.5(2007.8.1) 谭久彬, 崔继文, 邹丽敏, 敖磊, 赵熙萍. 基于双光纤耦合的微小内腔体尺寸测量装置与方法. 申请号:CN**8.6, 公开号:CN**,专利号:ZL**8.6(2007.8.1) 谭久彬, 敖磊, 崔继文. 基于光程倍增补偿方法的二维光电自准直装置和测量方法. 申请号:CN**6.9, 公开号: CN**,专利号:ZL**6.9(2007.3.14) 谭久彬, 敖磊, 崔继文, 赵维谦. 漂移量靶标反馈控制的长距离二维光电自准直装置和方法. 申请号:CN**2.3, 公开号: CN**,专利号:ZL**2.3(2007.2007.3.14) 谭久彬, 敖磊, 崔继文, 黄向东. 基于动态差动补偿方法的二维光电自准直装置和测量方法. 申请号:CN**3.0, 公开号: CN**,授权号:ZL**3.0(2006.10.25) 谭久彬,赵维谦,邹丽敏,崔继文,赵熙萍. 激光透、反组合监测补偿式圆柱度仪直线运动基准装置。申请号:**8.2,公开号:CN ** C,授权号:ZL**8.2(2005.12.21)


论文期刊


[1]Feng K, Cui J, Jiang D, et al. Improvement of the strain measurable range of an OFDR based on local similar characteristics of a Rayleigh scattering spectrum[J]. Optics Letters, 2018, 43(14):3293.

[2]Chen Y, Cui J, Tan J. Analysis of the coupling efficiency of a dual-fiber spherical coupler and improvement of the coupling efficiency with a polished spherical coupler[J]. IEEE Photonics Journal, 2018,PP(99).

[3]Feng K, Cui J, Sun X, et al. A tapered fourcores phase-shift FBG probe for three-dimensional micro-sacle measurement[J]. IEEE Photonics Technology Letters,2018, PP(99):1-1.

[4]Feng K, Cui J, Sun X, et al. Investigation of a three-dimensional micro-scalesensing system based on a tapered self-assembly four-cores fiber bragg grating probe[J]. Sensors, 2018, 18(9).

[5]Cui J, Zhao S, Yang D, et al. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems[J]. Applied optics, 2018, 57(6): 1424-1431.

[6]Dang H, Feng K, Cui J, et al. Spectral Purity Improvement by Combining Self-Injection Locking and Stimulated Thermal Rayleigh Scattering in Fiber Lasers[J]. IEEE Photonics Journal, 2018, 10(2): 1-9.

[7]Cui J, Lai H, Feng K, et al. Quantitative analysis of the minor deviations in nozzle internal geometry effect on the cavitating flow[J]. Experimental Thermal and Fluid Science, 2018, 94: 89-98.

[8]Cui J, Zhao S, Yang C, et al. Parallel transport frame for fiber shape sensing[J]. IEEE Photonics Journal, 2018, 10(1): 1-12.

[9]Zhao S, Cui J, Yang C, et al. Simultaneous measurement of shape and temperature in the substrate-attaching-fibers sensing system[J]. IEEE Photonics Journal, 2017, 9(6): 1-9.

[10]Feng K, Cui J, Hong D, et al. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis[J]. Sensors, 2017, 17(2).

[11]Cui J, Dang H, Feng K, et al. Stimulated Brillouin scattering evolution and suppression in an integrated stimulated thermal Rayleigh scattering based fiber laser[J]. Photonics Research, 2017, 5(3):233.

[12]Zhao S, Cui J, Yang C, et al. Simultaneous measurement of shape and temperature in the substrate-attaching-fibers sensing system[J]. IEEE Photonics Journal, 2017, PP(99):1-1.

[13]Cui J, Zhao S, Yang C, et al. Parallel transport frame for fiber shape sensing[J]. IEEE Photonics Journal, 2017.

[14]Cui J, Lai H, Li J, et al. Visualization of internal flow and the effect of orifice geometry on the characteristics of spray and flow field in pressure-swirl atomizers[J]. Applied Thermal Engineering, 2017, 127: 812-822.

[15]Dang H, Cui J, Feng K, et al. Dimensional measurement of micro parts with high aspect ratio in HIT-UOI[C]//Optical Metrology and Inspection for Industrial Applications IV. International Society for Optics and Photonics, 2016, 10023: 100231J.

[16]Feng K, Cui J, Dang H, et al. Four-cores FBG probe based on capillary self-assembly fabrication technique for 3D measurement[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2339-2342.

[17]Li Z, Cui J, Wu J, et al. Structural parameters analysis and optimization of line-structured light measuring system[C]//Mechatronics and Machine Vision in Practice (M2VIP), 2016 23rd International Conference on. IEEE, 2016: 1-6.

[18]Feng K, Cui J, Dang H, et al. Investigation and development of a high spectral resolution coherent optical spectrum analysis system[J]. Optics express, 2016, 24(22): 25389-25402.

[19]Wang S, Cui J, Tan J, et al. Development of a 6-DoF motion system for realizing a linear datum for geometric measurements[J]. Review of Scientific Instruments, 2016, 87(8): 085115.

[20]Cui J, Li J, Feng K, et al. A 3D fiber probe based on orthogonal micro focal-length collimation and fiber Bragg grating[J]. Measurement Science and Technology, 2016, 27(7): 074005.

[21]Feng K, Cui J, Zhao S, et al. A Twin FBG Probe and Integration With a Microhole-Measuring Machine for the Measurement of Microholes of High Aspect Ratios[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1242-1251.

[22]Wu J, Zhang Y, Cui J, et al. Carrier attitude adjustment strategy of a space robot for on-orbit detection[J]. International Journal of Advanced Robotic Systems, 2016, 13(1): 18.

[23]Ma W, Cui J, Liu Y, et al. Improving the pneumatic hammer stability of aerostatic thrust bearing with recess using damping orifices[J]. Tribology International, 2016, 103: 281-288.

[24]Feng K, Cui J, Jiang X, et al. Analysis and simulation method of the cantilever FBG sensors[C]//Seventh International Symposium on Precision Mechanical Measurements. International Society for Optics and Photonics, 2016, 9903: 99031E.

[25]Tao Z, Cui J, Tan J. Simultaneous multi-channel absolute position alignment by multi-order grating interferometry[J]. Optics express, 2016, 24(2): 802-816.

[26]Li P, Ding X M, Tan J B, et al. A hybrid method based on reduced constraint region and convex-hull edge for flatness error evaluation[J]. Precision Engineering, 2016, 45: 168-175.

[27]Cui J, Zhu S, Feng K, et al. Fan-out device for multicore fiber coupling application based on capillary bridge self-assembly fabrication method[J]. Optical Fiber Technology, 2015, 26: 234-242.

[28]Cui J, Feng K, Hu Y, et al. Double fiber probe with a single fiber Bragg grating based on the capillary-driven self-assembly fabrication method for dimensional measurement of micro parts[J]. Optics express, 2015, 23(26): 32926-32940.

[29]Cui J, Li J, Feng K, et al. Three-dimensional fiber probe based on orthogonal micro focal-length collimation for the measurement of micro parts[J]. Optics express, 2015, 23(20): 26386-26398.

[30]Wu J, Cai S, Cui J, et al. A generalized analytical compliance model for cartwheel flexure hinges[J]. Review of Scientific Instruments, 2015, 86(10): 105003.

[31]Tao Z, Tan J, Cui J. Linear response, multi-order grating interferometry using a reversal shearing imaging system[J]. Optics letters, 2015, 40(19): 4552-4555.

[32]Chen Y, Cui J, Tan J. Extension of light transmission distance of single-mode fiber using a microaxicon-lensed fiber end[J]. Applied optics, 2015, 54(21): 6471-6475.

[33]Cui J, Li J, Feng K, et al. Three-dimensional fiber probe based on micro focal-length collimation and a fiber Bragg grating for the measurement of micro parts[J]. Optics letters, 2015, 40(14): 3348-3351.

[34]Cui J, Hu Y, Feng K, et al. FBG Interrogation Method with High Resolution and Response Speed Based on a Re?ective-Matched FBG Scheme[J]. Sensors, 2015, 15(7): 16516-16535

[35]Liu Y, Yuan M, Cao J, et al. Evaluation of measurement uncertainty in H-drive stage during high acceleration based on Monte Carlo method[J]. International Journal of Machine Tools and Manufacture, 2015, 93: 1-9.

[36]Wu J, Yuan Y, Cui J. Effects of dynamic characters of the macro-micro fast coupling system in long stroke system[C]// International Symposium on Precision Engineering Measurement and Instrumentation. International Society for Optics and Photonics, 2015:944641-944641-8.

[37]Zhang T, Tan J, Cui J. Multiple-grating self-correcting algorithm for processed mark measurement error[C]//International Symposium on Precision Engineering Measurement and Instrumentation. International Society for Optics and Photonics, 2015: 94462M-94462M-9.

[38]Li P, Cui J, Tan J, et al. Application of deadbeat control with constraint and non-ripple in precision rapid displacement system[C]//International Symposium on Precision Engineering Measurement and Instrumentation. International Society for Optics and Photonics, 2015: 94462O-94462O-7.

[39]Wang S, Tan J, Cui J. Error mechanism analyses of an ultra-precision stage for high speed scan motion over a large stroke[C]//International Symposium on Precision Engineering Measurement and Instrumentation. International Society for Optics and Photonics, 2015: 94462Q-94462Q-9.

[40]Chen Y, Zhou T, Cui J, et al. Extension of light transmission distance of single core fiber with a micro axicon fixed at fiber end[C]//Ninth International Symposium on Precision Engineering Measurement and Instrumentation. International Society for Optics and Photonics, 2015, 9446: 94460F.

[41]WU J, YUAN Y, CUI J, et al. Design and test of macro-micro coupling system for dual-stage lithography[J]. Optics and Precision Engineering, 2015, 6: 023.

[42]Jianwei W, Jiwen C, Jiubin T. OPTIMIZATION OF CARTESIAN TRAJECTORY FOR ACCOMPANYING-FLIGHT SPACE ROBOT DURING ON-ORBIT DETECTION[J]. International Journal of Robotics and Automation, 2015, 30(4).

[43]Ma W, Tan J, Cui J, et al. Analysis of pneumatic hammer in rectangular aerostatic thrust bearing with groove[C]//International Symposium on Precision Engineering Measurement and Instrumentation. International Society for Optics and Photonics, 2015: 94463S-94463S-8.

[44]Liu Y, Yuan M, Cao J, et al. Use of two planar gratings to measure 3-DOF displacements of planar moving stage[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 163-169.

[45]Cui J, Tao Z, Liu Z, et al. Reducing coherent noise in interference systems using the phase modulation technique[J]. Applied Optics, 2015, 54(24):7308-7315.

[46]Feng K, Cui J, Tan J. An example image super-resolution algorithm based on modified k-means with hybrid particle swarm optimization[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2014, 9273(3):277–287.

[47]Cui J, Feng K, Hu Y, et al. A twin fiber Bragg grating probe for the dimensional measurement of microholes[J]. IEEE Photonics Technology Letters, 2014, 26(17): 1778-1781.

[48]Cui J, Chen Y, Tan J. Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe[J]. Measurement Science and Technology, 2014, 25(7): 075902.

[49]Cui J, Feng K, Li J, et al. Development of a double fiber probe with a single fiber Bragg grating for dimensional measurement of microholes with high aspect ratios[J]. Optics letters, 2014, 39(10): 2868-2871.

[50]Cui J, Feng K, Tan J B. Further improvement of edge location accuracy of double fiber spherical coupling sensor using orthogonal Jacobi–Fourier moments[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(1): 353-359.

[51]Cui J, Feng K, Zhu S, et al. Subpixel edge location method proposed to improve the performance of optical fiber spherical coupling probe during dimensional measurement of micro-cavities with high aspect ratio[J]. Measurement, 2014, 47: 707-714.

[52]Cui J, Feng K, Zhu S, et al. Development of FBG probes for dimensional metrology with micro parts of high aspect ratio[J]. Journal of Modern Optics, 2013, 60(21): 2001-2011.

[53]Cui J, Feng K, Yu W. Improved MAP based algorithm for image super-resolution restoration[C]//Image and Graphics (ICIG), 2013 Seventh International Conference on. IEEE, 2013: 117-120.

[54]Zhu F, Tan J, Cui J. Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations[J]. Review of Scientific Instruments, 2013, 84(6): 065116.

[55]Zhu F, Tan J, Cui J. Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation method in compliance with the criteria with high accuracy and stability[J]. Optics express, 2013, 21(9): 11391-11403.

[56]Cui J, Li L, Li J, et al. Fiber probe for micro-hole measurement based on detection of returning light energy[J]. Sensors and Actuators A: Physical, 2013, 190: 13-18.

[57]Wu J, Zhao H, Cui J. Design and testing of alterable preload running-in system of solid lubricated bearings[C]//Eighth International Symposium on Precision Engineering Measurement and Instrumentation. International Society for Optics and Photonics, 2013, 8759: 875918.

[58]Li J A, Tan J B, Cui J W. Study on method of feedback compensation drift of collimation beam based on filter[J]. Journal of Optoelectronics Laser, 2013, 24(2):336-342.

[59]Cui J, Yang F, Tan J. Delay error and compensation in measurement of micro-scale using aiming and triggering method[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8759.

[60]Cui J, Li L, Tan J. Opto-tactile probe based on spherical coupling for inner dimension measurement[J]. Measurement Science and Technology, 2012, 23(8): 085105.

[61]Hou B K, Cui J W, Tan J B. Intersatellite baseline direction measurement based on laser and telescopic pupil[J]. Journal of Optoelectronics Laser, 2012, 23(7):1363-1368.

[62]Cui J W, Chen S L, Tong Z. Edge subpixel location based on orthogonal Jacobi-Fourier moments[J]. Journal of Harbin Institute of Technology, 2011, 43(5):65-70.

[63]Cui J, Li L, Tan J. Optical fiber probe based on spherical coupling of light energy for inner-dimension measurement of microstructures with high aspect ratios[J]. Optics letters, 2011, 36(23): 4689-4691.

[64]Jiean L, Xuemei D, Jiwen C, et al. Compensation of laser beam directional stability offset error by using translational spectroscope[C]//Proc. of SPIE Vol. 2011, 7544: 75441B-1.

[65]Cui J, Li L. Development of ultra-precision micro-cavity measurement technique in HIT-UOI[C]//Sixth International Symposium on Precision Engineering Measurements and Instrumentation. International Society for Optics and Photonics, 2010, 7544: 75441A.

[66]Tan J, Wang F, Cui J. Fiber deflection probing method based on micro focal-length collimation[J]. Optics express, 2010, 18(3): 2925-2933.

[67]Cui J W, Chen S L, Tan J B. Measurement of micro-cavity dimension by double optical fiber coupler based on OFMM@#%s location[J]. Optics & Precision Engineering, 2010, 18(5):1068-1076.

[68]刘洋, 崔继文. 维纳/投影限制集混合算法实现超分辨率图像复原[J]. 中国激光, 2010, 37(3):789-794.

[69]崔继文, 谭久彬, 宋传曦. 精密微小内尺度测量技术研究进展[J]. 中国机械工程, 2010(1):120-125.

[70]Cui J W, Song C X, Tan J B. Touch-Trigger Measurement of Micro-Cavity by Optical Fiber Coupling[J]. Key Engineering Materials, 2010, 437:174-178.

[71]Cui J, Tan J, Wang F, et al. Measurement of micro-hole with high aspect ratio by double optical fibers coupling[C]//Fifth International Symposium on Instrumentation Science and Technology. International Society for Optics and Photonics, 2009, 7133: 713325.

[72]崔继文,谭久彬,刘洋.基于双光纤耦合的微深孔测量方法研究. 红外与激光工程. 2009, 38(1):106-109 (EI:**422)

[73]Cui J, Tan J. Fast auto-focusing based on partial image characteristics[C]//Ninth International Symposium on Laser Metrology. International Society for Optics and Photonics, 2008, 7155: 71550O.

[74]康文静, 丁雪梅, 刘功亮,等. 带宽自适应Mean Shift跟踪算法[J]. 光电子?激光, 2008, 19(1):135-138.

[75]崔继文, 谭久彬. 基于变窗口浮动阈值的调制结构光三维测量方法[J]. 计量学报, 2008, 29(b09):88-92.

[76]Bin T J, Lei A, Jiwen C, et al. Subpixel edge location based on orthogonal Fourier–Mellin moments[J]. Image & Vision Computing, 2008, 26(4):563-569.

[77]Cui J W, Tan J B, Shi Q. Measurement Method for Micro-Cavity Based on Improved MAP Algorithm[J]. Key Engineering Materials, 2008, 381-382:191-194.

[78]Lei A. Fast and Precise Center Location for Circle Target of CCD Laser Autocollimator[J]. Acta Optica Sinica, 2007, 27(2):253-258.

[79]Kang W J, Ding X M, Cui J W, et al. Fast straight-line extraction algorithm based on improved Hough transform[J]. Opto-Electronic Engineering, 2007, 34(3):105-108.

[80]Cui J W, Tan J B, Lei A O, et al. Precise location for optical fiber surface with sampling restraint Hough transformation[J]. Optics & Precision Engineering, 2007, 15(1):9-15.

崔继文, 谭久彬, 敖磊, 等. 约束抽样Hough变换的光纤端面精确定位[J]. 光学精密工程, 2007, 15(1):9-15.

[81]Cui J W, Tan J B, Zhou Y, et al. Improvement of vision measurement accuracy using Zernike moment based edge location error compensation model[J]. 2007, 48(1):1353-1360.

[82]Tan J, Cui J. Further improvement of edge location accuracy of charge-coupled-device laser autocollimators using orthogonal Fourier-Mellin moments[J]. Optical Engineering, 2007, 46(5):57007.

[83]Cui J, Tan J, Shi Q. Measurement Method for Micro-cavity Based on Super-resolution Restoration[C]// International Conference on Image and Graphics. IEEE, 2007:139-142.

[84]Lei A O, Tan J B, Cui J W, et al. Anti-Noise and Precise Circle Target Center Location Method of CCD Laser Autocollimator[J]. Chinese Journal of Lasers, 2006, 33(12):1605-1614.

敖磊, 谭久彬, 崔继文,等. 激光CCD自准直仪圆目标中心抗噪声精确定位方法[J]. 中国激光, 2006, 33(12):1609-1614.

[85]Cui J, Tan J, Kang W, et al. Variable window and variant threshold segmentation algorithm based on light field intensity[J]. Proc Spie, 2006, 6027:60271F-60271F-6.

[86]崔继文, 谭久彬, 刘丹丹. 基于MAP与POCS混合算法的微内腔尺寸测量方法[J]. 计量学报, 2006, 27(s1):54-57.

[87]Kang W J, Ding X M, Cui J W, et al. Research on Extraction of Ship Target in Complex Sea-sky Background[C]// 2006:354.

[88]Ding X, Kang W, Cui J, et al. Automatic extraction of road network from aerial images[C]// International Symposium on Systems and Control in Aerospace and Astronautics. IEEE, 2006:4 pp.-223.

[89]崔继文,谭久彬. 基于梯度信息的随机Hough变换圆轮廓测量技术. 红外与激光工程 2006,35(10)

[90]Zhao W, Tan J, Qiu L, et al. Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts[J]. Review of scientific instruments, 2005, 76(3): 036101.

[91]敖磊, 谭久彬, 崔继文,等. 激光CCD二维自准直仪中圆目标中心精确定位算法[J]. 光学精密工程, 2005, 13(6):668-673.

[92]Cui J W, Tan J B. A circle contour measurement technique based on Randomized Hough Transform using gradient information[C]//Key Engineering Materials. Trans Tech Publications, 2005, 295: 277-282.

[93]崔继文, 谭久彬, 敖磊,等. 激光CCD二维自准直像处理技术实现的聚焦方法[J]. 光电工程, 2005, 32(6):12-16.

[94]Cui J W, Tan J B, Ao L, et al. Optimized algorithm of laser spot center location in strong noise[C]//Journal of Physics: Conference Series. IOP Publishing, 2005, 13(1): 312.

[95]崔继文, 谭久彬. 基于约束抽样Hough变换的圆轮廓快速检测技术[J]. 哈尔滨工业大学学报, 2005, 37(10):1394-1396.

[96]Cui J W, Tan J B. Algorithm for edge subpixel location based on zernike moment[J]. Optical technique, 2005, 31(5): 779-782. 崔继文, 谭久彬. 基于Zernike矩的亚像素边缘定位算法.光学技术.2005 No.5(EI:**)








相关话题/工学 光学 技术 测量 激光