删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

哈尔滨工业大学理学院研究生考研导师简介-张景文

本站小编 Free考研网/2019-05-25

基本信息科学研究教育教学论文专著
基本信息



张景文,男,汉族,哈尔滨工业大学理学院物理系教授,博士导师。

荣誉称号
暂无填写


工作经历
时间工作经历
2010年6月至今哈尔滨工业大学物理系教授
2005年九月至2010 年3月波士顿应用科技有限公司, 波士顿,美国, Sr. Scientist, Manager of Laser Technology,
2003年1月至2005年8月Sr. Optical Engineer, Delta Search Labs, Inc. Division of Research and Development, 波士顿,美国
2001年1月至2002年12月Scientist and Sr. Scientist, 康宁应用科技有限公司, 波士顿,美国
1997年10月至2001年1月Research Associate, and Sr. Research Associate, Physics Department, Case Western Reserve University, 克里夫兰,美国






教育经历
Executive Training Program in Business Administration, 2007-2008, OCEAN Education Center.

Post Doctoral Training in Nonlinear Optics Materials and Devices, Case Western Reserve University, Cleveland, Ohio, 1997-2000 (Prof. K. D. Singer)Ph.D. in Applications of Optical Nonlinearity & Optical Information Processing, Harbin Institute of Technology, P. R. China, 1996.


主要任职
哈尔滨工业大学任教授,博士导师


研究领域:非线性与信息光学
新型陶瓷发光与光学制冷电磁辐射传感器及阵列研究及开发生物医学光学有机光学材料在快速实时图像显示及干涉计量应用 主要研究方向:掺稀土镧代锆钛铅电光陶瓷激光材料在中波红外(mid-wave IR)具有优良的通透性能,可用于开发多功能可调近红外至中波红外相干光源,以应付在生物,遥感方面的急切需求。随机(无序)激光震荡(random lasing)与光子安德森定域效应(Anderson localization)的研究进年来掀起热潮。在随机激光器中,激光振荡的实现是借助于漫射性材料中强的散射致使光波被多次光散射陷留于增益材料中足够长的时间而被受激放大。值得指出的是,电光陶瓷激光材料可控电致光致散射效应可用于实现光子安德森定域。电光陶瓷激光材料是设计可调随机激光器(random laser)的理想增益介质。由于随机激光器的良好的单色性,此开发可满足基于光谱测量的可调单色光源的亟需。总之,随机激光震荡与光子安德森定域效应的研究既有较深的学术价值又有宽广的应用前景。微片激光器(microchip laser)及阵列与微振荡器(microresonator)的研究随着微纳加工技术的日臻成熟而有望在应用上取得突破。与单晶晶体材料相比,电光陶瓷激光材料可以有效掺入高浓度的稀土元素(据报道可高达29%)。利用此优势,可以开发多功能微片激光器(microchip laser)及阵列,亦可实现微振荡器(microresonator)。利用电光陶瓷激光材料的多功能特性,可望实现芯片实验系统(lab-on-chip)。

电光镧代锆钛铅系列陶瓷材料的固有能隙为3.5 eV,其在短波红外至中波红外的光学通透性优良。其在长波红外极强的吸收使其诱发电场。此电场可以调制后继的功能材料薄层。利用此原理,可以实现热成像仪。其突出的优点是可以直接被裸眼看到。另外,其室温操作备受青睐,可为消防员提供烟雾中的助视工具,也可用于夜行人提供夜视的手段。瞄准国民经济主战场,本研究方向可以推出低成本,低功耗的红外成像仪。X-射线传感器,γ-射线传感器及阵列(focal plane array)的研发一般均以半导体为基质材料。掺稀土电光镧代锆钛铅系列陶瓷材料经短波长光学辐照,电子被激发到导带,进而可被陷阱俘获。此后,对于任何外界的物理作用,诸如辐照,机械作用,电子作用,热刺激等,都会引发电子回跳到激光通道(laser channel)的上能级(upper level), 进而跃迁到下能级(lower level)。基于此原理,可以开发X-射线传感器,γ-射线传感器及阵列(focal plane array)。由于电光陶瓷激光材料可以有效掺入高浓度的稀土元素(据报道可高达29%),利用其类雪崩效应,亦可望开发单光子探测器。另外,此电光陶瓷的光色效应及其多功能,诸如,压电,铁点,光伏,热释电,电光,使其被称为高智能(very smart)材料。沿着这条技术路线,可以开发许多新兴的传感器及阵列。例如,物体受热历史的监控(thermal history indication)等等。激光诱导击穿(laser induced breakdown, LIB)光谱被广泛的用于物质鉴别。近年来,对激光诱导击穿的热谱发射的分析可望获取更丰富的物构信息。实际上,直接用脉冲微波诱导热谱可能更为有效。基于申请人多年来在研究开发电磁波光谱仪的经历,拟开拓新型脉冲激光或微波激发热谱光谱仪的研究方向。

本团队成员在过去几年在工业界实际设计开发了商业化的纤维光学的相关器件。基于这些研究基础,拟开展基于纤维光学的等离子电子学(plasmonics) 及量子纠缠态(quantum entanglement)研究工作。电光镧代锆钛铅系列陶瓷材料具有高的折射率与良好的电光特性,可用于探索可调的等离子电子学传感器阵列。由于在该材料系列利用飞秒激光器成功地刻制了波导通道,使得制备高度阵列化的传感器成为可能。由于光纤通讯在量子光学的潜力,可以合作开展量子纠缠态的研究工作。利用镧代锆钛铅系列陶瓷材料良好的电光特性,可以实现基于量子纠缠态运算和通讯的多功能器件与系统。由于遥感超谱(hyperspectral)图象谱分辨率的提高,如今已可以获得比多光谱(multispectral)图象更丰富的信息,并使得许多解决许多用多光谱技术可望不可及的问题,它的问世是遥感技术应用的一个重大飞跃,可以用于农业,采矿,军事,国家安全等多方面。结合近年来可调光学滤波器及任意谱型斩波器的研究基础,可以开展中波红外遥感超谱图象谱相关工作。结合哈尔滨工业大学物理系及光学重点学科及其他校系的合作,冀望开拓新的应用领域。

团队成员
赵华: 教授, 研究方向: 固态发光与基于有机非线性材料的全息立体显示

讲授课程
简介:此课程涵盖物理专业光学课的全部内容。

光学


招生信息
硕士招生:


新型光源与光学制冷: 电光陶瓷及微纳结构发光制冷机制及应用

纳微结构器件: 飞秒激光光刻波导.放大器.激光器,非电离电磁波探测器与阵列研究



博士招生:


随机激光振荡与安德森定域效应

纳微结构器件: 飞秒激光光刻波导.放大器.激光器,

红外光学传递,探测与滤波技术

太赫兹光学器件的原理与应用

论文期刊
1. Liang Li, Hua Zhao, and Jingwen Zhang*, “Electrically tuning reflection of graphene-based Tamm plasmon polariton structures at 1550nm”, Appl. Phys. Lett. 111 (8), 083504 (2017). doi: http://dx.doi.org/10.1063/1.**.
2. Hua Zhao, Tingyu Xue, Hang Su, Yingce Wang, and Jingwen Zhang*, “Subwavelength coupling strengthened optical amplification in nematic liquid crystal cells”, Appl. Phys. Lett. 111 (11), 111602 (2017). doi: 10.1063/1.**.
3. Liang Li, Hua Zhao, and Jingwen Zhang*, “Tunable perfect absorber supported by accumulation electron gas at ITO-dielectric heterointerface", J. Phys. D: Appl. Phys. 50 (40), 405109 (2017). Published 13 September 2017. DOI: 10.1088/1361-6463/aa8662.
4. Dewang Huo, Jingwen Zhang, Hao Wang, Xiaoxuan Ren, Chao Wang, Hang Su and Hua Zhao*, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array”, Nanoscale Research Letters, 12:465, (2017). Published: 25 July 2017, https://doi.org/10.1186/s11671-017-2232-4.
5. Caixia Xu, Jingwen Zhang, Long Xu, Xinyan Ma, and Hua Zhao*, “Photoinduced charge carriers@#% accumulation and its impact on random lasing in Nd3+ doped (Pb,La)(Zr,Ti)O3 ceramics”, Journal of Applied Physics 121, 243104 (2017). doi: 10.1063/1.**.
6. Caixia Xu, Jingwen Zhang, Long Xu, and Hua Zhao*, “Multiple scattering and random walk based spectra modulation in Ho3+/Tm3+ codoped (Pb,La)(Ti,Zr)O3 ceramics under plasma atmosphere”, Vol. 7, No. 6 |1 Jun 2017 | OPTICAL MATERIALS EXPRESS 1745-1453 (2017). https://doi.org/10.1364/OME.7.001745.
7. Hua Zhao, Yingce Wang, Tingyu Xue, Hang Su, and Jingwen Zhang*, “Direct evidence of visible surface plasmon excitation in ITO film coated on LiNbO3 slabs”, Opt. Express, 25(6), 6227-6233 (2017). DOI: https://doi.org/10.1364/OE.25.006227.
8. Hao Wang, Xiaolong Wang, Chen Yan, Hua Zhao, Jingwen Zhang*, Christian Santschi, and
Olivier J. F. Martin*, “Full Color Generation Using Silver Tandem Nanodisks”, ACS nano, 11(5), 4419?4427 (2017), Accepted: March 20, 2017, Published: March 20, 2017 2017. DOI: 10.1021/acsnano.6b08465.
9. Caixia Xu, Jingwen Zhang, Haibin Sun, and Hua Zhao*, “Random lasing emission and oscillation in femtosecond laser machined microstructured Nd3+-doped (Pb,La)(Zr, Ti)O3 (10/65/35) ceramics”, RSC Adv. 6, 95442 (2016), DOI: 10.1039/c6ra19867h.
10. Hua Zhao, Tingyu Xue, Liang Li, and Jingwen Zhang*, “Ultra-low loss visible surface plasmon based waveguides formed in indium-tin-oxide coated Fe-doped LiNbO3 slabs”, Opt. Lett. 41(18), pp. 4150-4153 (2016). doi: 10.1364/OL.41.004150.
11. Liang Li, Jingwen Zhang, and Hua Zhao*, “Enhanced photorefractive performance of bulk Cu-doped KNSBN crystals through surface electrostatic modification”, Opt. Commun. Volume 382, 399–404 (2017). 1 January 2017.
12. Hao Wang, Hua Zhao, Hang Su, Guangwei Hu, and Jingwen Zhang*, “Active tuning epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes”, Appl. Phys. Express 9(9), 092201 (2016), Published 4 August 2016. http://doi.org/10.7567/APEX.9.092201.
13. Caixia Xu, Jingwen Zhang, Yingyin. K. Zou, and Hua Zhao, “Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics”, Opt. Express, 24 (6) 5744-5473 (2016).
DOI:10.1364/OE.24.005744.
14. Jiayin Fu, Jingwen Zhang, Tingyu Xue, and Hua Zhao*, “Large exponential gain coefficient in polymer assisted asymmetric liquid crystal cells originating from surface effect”, Opt. Commun. 374, 107–113 (2016). http://dx.doi.org/10.1016/j.optcom.2016.04.056
15. Long Xu, Jingwen Zhang, Caixia Xu, and Hua Zhao*, “Weak localization based enhancement of lasing emission under plasma atmosphere in Nd3+ doped (Pb, La) (Zr, Ti)O3 disordered ceramics”, Journal of Luminescence, 173, 185–191 (2016). Available online 13 January 2016 DOI: 10.1016/j.jlumin.2016.01.008.
16. Hua Zhao, Liang Li, Guangwei Hu, and Jingwen Zhang*, “High-order diffraction and nanolayer electrostatic modification
in Cu-doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals”, Optical Materials Express, Vol. 6, No. 2, 509-516 (2016), published 15 Jan 2016. DOI:10.1364/OME.6.000509.
17. Hao Wang, Hua Zhao, Guangwei Hu, Siren Li, Hang Su, and Jingwen Zhang*, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate”, Scientific Reports, 5,18258(2015). DOI: 10.1038/srep18258.
18. Hao Wang, Jingwen Zhang, and Hua Zhao*, “Surface plasmon polariton excitation by electrostatic modulation and
phase grating in indium-tin-oxide coated lithium niobate slabs”, Journal
of Applied Physics, 118, 063102 (2015); doi: 10.1063/1.**.
19. Jingwen Zhang, Caixia, Xu, Long Xu, and Hua Zhao*, “Light energy trapping and localization in RE3+ doped PLZT ceramics”, Technical Papers: JTu5A.103.pdf CLEO:2015 Technical Digest ? OSA 2015 CLEO/IQEC’15, in San Jose, California, USA, May 10-25, 2015. (SCIE).
20. Hua Zhao, Liang Li, Hao Wang, and Jingwen Zhang*, “Visible excitation of surface plasmon polariton and strengthened nonlinearity in ITO coated Fe:LiNbO3”, Technical Papers: JTu5A.82.pdf CLEO:2015 Technical Digest ? OSA 2015 CLEO/IQEC’15, in San Jose, California, USA, May 10-15, 2015. (SCIE).
21. Hua Zhao, Tingyu Xue, and Jingwen Zhang*, “Strengthened nonlinearity in liquid crystal panel with ZnSe aligning layers due to surface charge accumulation”, SPIE 9565-16, Optics and Photonics, 2015, Liquid Crystals XIX, Sunday–Monday 9–10 August 2015, San Diego, California, USA. (SCIE).
22. Jingwen Zhang, Jiayin Fu, Guangwei Hu, and Hua Zhao*, “Electrostatic modification of ZnSe/polymer interface in polymer-nematogen composite and its impact on photorefractive hologram”, SPIE 9547-24, Optics and Photonics, 2015, Light Manipulating Organic Materials and Devices II, Monday–Thursday 10–13 August
2015, San Diego, California, USA. (SCIE).
23. Hua Zhao, Liang Li, Guanwei Hu, and Jingwen Zhang*, “Surface plasmon strengthened nonlinearity in indium-tin-oxide coated Cu-doped potassium sodium barium strontium niobate crystals”, SPIE 9564-26, Optics and Photonics, 2015, Plasmonics: Metallic Nanostructures and Their Optical Properties XIII, Sunday–Thursday 9–13 August 2015, San Diego, California, USA. (SCIE).
24. Caixia Xu, Jingwen Zhang, Long Xu, and Hua Zhao*, “Mechanism of photochromic effect in Pb(Zr,Ti)O3 and (Pb,La)(Zr,Ti)O3 ceramics under violet/IR light illumination”,J. Appl. Phys. 117(2), 023107 (2015). http://dx.doi.org/10.1063/1.**.
25. Hao Wang, Hua Zhao, Liang Li, Chao Xu, and Jingwen Zhang*, “Surface plasmon polariton boosted photorefractive
scattering in indium tin oxide coated Fe-doped lithium niobate slabs”, Optics Communications, 338, 505– 510 (2015). doi:10.1016/j.optcom.2014.11.028.
26. Cuiling Meng, Hua Zhao, Tingyu Xue, Jiayin Fu, and Jingwen Zhang*, “Impact of thickness of liquid crystal layer on response rate and exponential gain coefficient with assistance of ZnSe film”, Applied Optics, 53(36)8456-8462 (2014)doi: 10.1364/AO.53.008456.
27. Hao Wang,Hua Zhao, Chao Xu, Liang Li, Guangwei Hu, and Jingwen Zhang*, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide”, Applied Physics Express (Apex), 7, 102001 (2014) http://dx.doi.org/10.7567/APEX.7.102001.
28. Hao Wang, Hua Zhao, Guangwei Hu, and Jingwen Zhang*, “Surface plasmon polaritons and visible light coupling via photorefractive phase gratings in indium tin oxide coated iron-doped LiNbO3 crystal slabs”, Oral presentation, Annual Meeting of Optical Society of America, October, 19-23, 2014, Tucson, Arizona, USA, FiO/LS 2014 ? OSA 2014 FTu1E.2.pdf.
29. Tingyu Xue, Hua Zhao, Cuiling Meng, Jiayin Fu, and Jingwen Zhang*, “Surface plasmon polaritons and visible radiation
coupling in dye doped liquid crystal cells with ZnSe interlayers”, Oral presentation, Annual Meeting of Optical Society of America, October, 19-23, 2014, Tucson, Arizona, USA, FiO/LS 2014 ? OSA 2014 FTu1E.3.pdf.
30. Hua Zhao, Xingru Zhang, Caixia Xu, Fankui Sun, Xuesheng Chen, Baldassare Di Bartolo, Kewen K. Li, and Jingwen
Zhang*, “Spectroscopic properties and optical amplification in electrooptic ceramics of Pb0.90La0.10[(Yb1/2Nb1/2)0.15 (Zr0.425Ti0.575)0.85]0.975O3”, J. Lumin, Volume 157, January 2015, 303–309 (2015). doi:10.1016/j.jlumin.2014.08.051.
31. Tingyu Xue, Hua Zhao, Cuiling Meng, Jiayin Fu, and Jingwen Zhang*, “Impact of surface plasmon polaritons on photorefractive effect in dye doped liquid crystal cells with ZnSe interlayers”, Opt. Express, 22, No. 17, 20964-20972 (2014). DOI:10.1364/OE.22.020964.
32. Long Xu, Hua Zhao, Caixia Xu, Siqi Zhang, and Jingwen Zhang*,“Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb,
La)(Zr, Ti)O3 ceramics”,J. Appl. Phys. 116, 063104 (2014). http://dx.doi.org/10.1063/1.**.
33. Long Xu, Jingwen Zhang, Hua Zhao*,and Yi Zhang, “Enhanced random lasing emission under plasma atmosphere in Nd3+ doped (Pb,La)(Zr,Ti)O3 disordered ceramics”, Technical Papers: JTu4A.19.pdf CLEO:2014 Technical Digest ? OSA 2014 CLEO/IQEC’14, in San Jose, California, USA, June 8-June 13, 2014, (SCIE).
34. Hua Zhao, Kun Zhang, Long Xu, Fankui Sun, Xuesheng Chen, Kewen K. Li, and Jingwen Zhang*, “Optical amplification in disordered electrooptic Tm+3 and Ho+3 codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations”, J. Appl. Phys. 115, 073101 (2014). http://dx.doi.org/10.1063/1.**.
35. Long Xu, Hua Zhao, Caixia Xu, Siqi Zhang, Yingyin K. Zou, and Jingwen Zhang*, “Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics”, Appl. Opt. 53 (4), 764-768 (2014). http://dx.doi.org/10.1364/AO.53.000764.
36. Jingwen W. Zhang*, Long Xu, and Hua Zhao, “Random lasing and weak localization of light in normally transparent gain media”, Invited talk, Workshop on Complex Luminescence Phenomena in Inorganic Materials, Erice, Italy, Jul. 30-Aug. 5, 2014.
37. Long Xu, Jingwen Zhang, Siqi Zhang, Caixia Xu, Yingyin K. Zou, and Hua Zhao*, “Electroinduced structural change- and random walks-based impact on the light emission in Er+3/Yb+3 doped (Pb,La)(Zr,Ti)O3 ceramics”, J. Appl. Phys. 113, 223101 (2013). http://dx.doi.org/10.1063/1.**.
38. Jingwen Zhang, Hao Wang, Xiudong Sun, and Hua Zhao*, “Mid-wave IR oscillation enhanced optical amplification in thin Fe-doped lithium niobate slabs”, Technical Papers: JW2A.15.pdf CLEO:2013 Technical Digest ? OSA 2013 CLEO/IQEC’13, in San Jose, California, USA, June 9-June 14, 2013, (SCIE).
39. Jingwen Zhang, Haibin Sun, Yingyin K. Zou, Xuesheng Chen, B. Di Bartolo, and Hua Zhao*, “Multifunctional optical
device with electrooptic Er3+ and Yb+3 doped lanthanum-modified lead zirconate titanate ceramic gain media”, J. Lightwave Technol. (Journal of Lightwave Technology) 31, 1495-1502 (2013). DOI:10.1109/JLT.2013.**.
40. Jingwen Zhang, Long Xu, Hao Wang, Feng Huang, Xiudong Sun, and Hua Zhao*, “Random lasing and weak localization of light in transparent Nd+3 doped phosphate glass”, Appl. Phys. Lett. 102, 021109 (2013); doi: 10.1063/1.**.
41. Hua Zhao, Chao Lian, Feng Huang, Tingyu Xue, Xiudong Sun, Yingyin K. Zou and Jingwen Zhang*, “Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells”, Appl. Phys. Lett. 101, 211118 (2012); doi: 10.1063/1.**.
42. Chao Lian, Hua Zhao, Yanbo Pei, Xiudong Sun, and Jingwen Zhang*, “Fast response beam coupling in liquid crystal cells sandwiched between ZnSe substrates”, Opt. Express, 20, 14, 15843-15852 (2012). doi: 10.1364/OE.20.015843.
43. H. Wang, J. Wang, H. Liu, D. Yu, X. Sun, and Jingwen Zhang*, “Study of effective optical thickness in photopolymer for application”, Opt. Lett. 37, 12, 2241-2243 (2012). doi: 10.1364/OL.37.002241.
44. Jingwen W. Zhang, Long Xu, Hua Zhao, and Xiudong Sun*, “Optoenergy storage and broadband optical amplification in Er3+ Doped PLZT Ceramics”, Technical Papers: JW2A.33, OSA/ CLEO 2012 at CLEO/IQEC’12 in San Jose, California, USA, May 6-May 11, 2012. (SCIE).
45. Jingwen W. Zhang, Long Xu, Xiudong Sun, Yingyin K. Zou, Xuesheng Chen, and HuaZhao*, “Electroinduced broadband
light emission in rare earth doped PLZT ceramics”, Technical Papers: JW4A.39, OSA/CLEO 2012 at CLEO/IQEC’12 in San Jose, California, USA, May 6-May 11, 2012. (SCIE).
46. C. Yuan, Z. Zhou, Jingwen. W. Zhang, X. Xiang, Y. Feng, and H. Sun, “Properties of propagation of electromagnetic
wave in a multilayer radar absorption structure with plasma and radar absorbing material”, IEEE Trans. Plasma Sci. 39,
1768-1775 (2011). DOI: 10.1109/TPS.2011.**.
47. Ye Wu, Hua Zhao, Yingyin K. Zou, Xuesheng Chen, Baldassare Di Bartolo, and Jingwen W. Zhang*, “Optoenergy storage, stimulated processes in optical amplification with electrooptic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate”,Journal of Applied Physics, 110,No. 3, 033160 (2011). doi:10.1063/1.**.
48. Cheng-Xun Yuan, Zhong-Xiang Zhou, Jingwen W. Zhang, Xiao-Li Xiang, Feng Yue, and Hong-Guo Sun, “FDTD analysis of terahertz wave propagation in a high-eemperature unmagnetized plasma slab”,IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 7, 1577-1584 (2011). DOI: 10.1109/TPS.2011.**.
49. Hua Zhao, Chao Lian, Xiudong Sun, and Jingwen W. Zhang*, “The nanoscale interlayer that raises response rate in
photorefractive liquid crystal polymer composites”, Optics Express, Vol. 19, No. 13, 12496-12502 (2011). doi: 10.1364/OE.19.012496.
50. Jingwen W. Zhang*, Haibin Sun, Hua Zhao, Yingyin K. Zou, Kewen K. Li, and Hua Jiang, “Dual functional optical amplifier with electrooptic gain medium of Er3+ doped PLZT ceramics”, Technical Papers: CThGG5.pdf, OSA/ CLEO 2011 at CLEO/IQEC’11, Baltimore, Maryland, USA, May 1-May 6, 2011, (SCIE).
51. Hua Zhao, Long Xu, Jingwen W. Zhang*,Yingyin K. Zou, KewenK. Li, Xiaomei Guo, Hua Jiang, Xuesheng Chen, and Piling Huang,“Upconversion with Ho3+ and Tm3+ codoped lead lanthanum zirconatetitanate ceramics”, Technical Papers: JWA52.pdf, OSA/ CLEO 2011 at CLEO/IQEC’11, Baltimore, Maryland, USA, May 1-May 6, 2011, (SCIE).
52. Hua Zhao, Xiudong Sun, Jingwen W. Zhang*, Yingyin K. Zou, Kewen K.Li, Yanyun Wang, and Hua Jiang, Pi-Ling Huang, and Xuesheng Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics”, Opt. Express, 19(4), 2965-2971 (2011). doi: 10.1364/OE.19.002965.
53. J. W. Zhang*, H. Zhao, and X. Sun, "Broadband coverage optical sensor with liquid crystalline materials and pyroelectrics",MRS 2010 fall meeting, Boston, Massachusetts, USA, Nov. 30-Dec.4, 2010. 2010 MRS Fall Meeting proceedings, MRS Online Proceedings Library (2011), 1293: mrsf10-1293-l03-04, Published online by Cambridge University Press: 28 March 2011.
54. C. Yuan, Z. Zhou, J. W. Zhang, X. Xiang, H. Sun, H. Wang, and Y. Du, “Propagation of terahertz waves in an atmospheric pressure microplasma with Epstein electron density profile”, J. Appl. Phys. 109, 063305 (2011). http://dx.doi.org/10.1063/1.**.
55. R. Singh,Z. Tian, J. Gu, W. Cao, J. Han, J. Wu, Q. Xing, M. He, J. W. Zhang, and W. Zhang, “Terahertz superconducting plasmonics and metamaterials”, Conference on Lasers and Electro-Optics (CLEO), Baltimore, Maryland, USA. MAY 01-06, 2011, (SCIE).
56. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. Chen, and W. Zhang, “Terahertz superconductor metamaterial”, Appl. Phys. Lett. 97, 071102, (2010). http://dx.doi.org/10.1063/1.**.
57. J. W. Zhang*, Y. Wu, H. Zhao, Y. Zou, K. K. Li, and H. Jiang, “Optical filtering, lasing action and optical amplification in electro-optic lanthanum lead zirconate titanate ceramics”, Symposium on Condensed Matters and Electro-Optic Physics, Tung Cheng University, Taichung, Taiwan, March 28-30, 2011.
58. J. W. Zhang*, X. Guo, L. Fan, Y. K. Zou, and J. Craley “Night Vision Enhancement Technology with Pyroelectric Field
Driven Liquid Crystal Display”, CFK7, Oral presentation at CLEO/IQEC’09 in Baltimore, Maryland, USA, May 31-June 5, 2009. (SCIE).
59. J. W. Zhang*, Y. K. Zou, K. K. Li, Q. Chen, H. Jiang, X. Chen and P. Huang, “Laser Action with Nd3+ Doped Electrooptic Lead Lanthanum Zirconate Titanate Ceramics”, CTuFF3, Oral presentation at CLEO/IQEC’09, Baltimore, Maryland, USA, May 31-June 5, 2009. (SCIE).
60. J. W. Zhang*, K. K. Li, H. Zhao, Y. K. Zou, B. Di Bartolo, and X. Chen, “Wavelength translation based on photoinduced broadband absorption in Nd3+ doped lanthanum lead zirconate titanate ceramics”, Opt. Lett. 34, 1570-1572 (2009). doi: 10.1364/OL.34.001570.
61. P. Huang, X. Chen, Y.K. Zou, K.K. Li, J. W. Zhang, and H. Jiang, “Optical amplification in Er3+-doped and Yb3+-codoped electro-optic lanthanum lead zirconate titanate ceramics”, Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2009), JUN 02-04, 2009 Baltimore, MD. (SCIE).
62. J. Zhang*, Y. Zou, Q. Chen, R. Zhang, K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics”, Appl. Phys. Lett. 89, 061113 (2006). http://dx.doi.org/10.1063/1.**.
63. J. Zhang, V.Ostroverkhov, K. D. Singer*, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals”, Opt. Lett. 25, (6), 414-416 (2000) (cited 123 times). doi: 10.1364/OL.25.000414.
64. J. Zhang, and K. D. Singer*, “Homogeneous photorefractive polymer/nematogen composite”, Appl. Phys. Lett. 72 (23), 2948-2950 (1998). http://dx.doi.org/10.1063/1.121503.
65. J. Zhang, and K. D. Singer*, “Novel photorefractive liquidcrystal polymer composites”, SPIE, 3471,14, (1998).
66. J. Zhang, H. Liu*, and W. Jia, “Investigation into self-pumped and mutually pumped phase conjugation with beams entering the negative c face of doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 Crystals”, Appl. Opt. Vol. 36, No. 16, 3753-3761 (1997).
67. J. Zhang*, X. Lu, L. Zhang, Z. Shao, H. Chen, and M. Jiang, “Self-reading geometry conjugators with copper-doped photorefractive (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals and their applications”, Opt. Eng. Vol. 35, No. 1, 294-303
(1996).
68. J. Zhang, H. Liu*, and W. Jia, “The influence of the internal photo-induced field on the formation of self-pumped
phase conjugation with doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals”, Appl. Opt. Vol. 35, No. 31, 6241-6248 (1996).
69. J. Zhang*, X. Lu, L. Zhang, X. Mu, Q. Jiang, Z. Shao, H. Chen, and M. Jiang, “Conjugation fidelity and multiple reflection waves in self-pumped phase conjugators with doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals”, Opt. Commun. Vol. 132,
574-582 (1996).
70. J. Zhang*, L. Zhang, Z. Shao, X. Mu, Q. Jiang, H. Chen, and M. Jiang, “Observation of multi-reflections from cat self-pumped phase conjugators with Cu-doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 crystals”, Opt. Lett. Vol. 20, No. 11, 979-981 (1995).
71. J. Zhang*, L. Zhang, X. Mu, Z. Shao, H. Chen, and M. Jiang, “Enhancement of the response rate of internal reflection self-pumped phase conjugators with Ce- and Mn-doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9 Nb2O6 crystals using intermittent light”, Appl. Phys. Lett. Vol. 67, No. 1, 10-12 (1995).
72. J. Zhang*, W. Sun, H. Zhao, S. Bian, K. Xu, M. Li, Y. Xu, “Enhancement of exponential gain coefficient as a result of light fanning effect in thin doped LiNbO3 crystals”, Opt. Lett. Vol. 18, No. 17, 1391-1393 (1993).
73. J. Zhang*, H. Xu, H. Pu, Y. Yuan, K. Xu, and Q. Jiang, “Real-time double-exposure interferometry using self-pumped phase conjugator with Cu:KNSBN”, Opt. Commun. Vol. 87, No. 5/6, 263-266 (1992).
74. J. Zhang*, H. Xu, Y. Yuan, and K. Xu, “Real-time coherent image differentiation using a self-pumped phase conjugator with Cu:KNSBN”, Appl. Opt. Vol. 32, No. 8, 1470-1472 (1993).
75. J. Zhang*, L. Zhang, X. Mu, Z. Shao, H. Chen, and M. Jiang, “Enhancement/reduction
of response rate of CAT self-pumped phase conjugators with doped (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6
crystals”, in Digest of CLEO/Pacific Rim@#%95, p13-14, July 10-14, 1995, Chiba, Tokyo, Japan, oral presentation.
76. J. Zhang*, H. Zhao, W. Sun, S. Bian, and K. Xu, “Very high photorefractive gain in two-beam coupling with thin iron-doped LiNbO3 crystal”, Chin. Phys. Lett. Vol. 10, No. 4, 227-231 (1993).
77. J. Zhang*, H. Zhao, et al “Multi-functional real-time optical processor with a self-pumped phase conjugator of Cu:KNSBN”, Chinese Journal of Lasers, Vol. B2, No. 6, 557-564 (1993).
78. J. Zhang*, et al, “Optical associative memory with "cat" self-pumped phase conjugator”, ACTA OPTICA SINICA, Vol. 14, No. 4 421-424 (1994).
79. J. Zhang*, et al. “Three-wave mixing at 1.06 μm with a semi-insulating GaAs:Cr crystal”, J. Infrared Millim. Waves, Vol. 13, No. 3, 181-185 (1994).
80. S. Bian*, J. Zhang, et al “Self-pumped phase conjugation of 18o cut Ce-doped KNSBN crystal at 632.8nm", Opt. Lett. Vol. 18, No. 10, 769-771 (1993).
81. L. Zhang*, J. Zhang, et al. “Demonstration of the formation of four-wave mixing interaction regions in a high-efficiency mutually pumped phase conjugator”, Appl. Phys. Lett. Vol. 68, No. 10, 1311-1313 (1996).
82. L. Zhang*, J. Zhang, et al. “Conjugation fidelity and bistability in high-efficiency, mutually-pumped phase conjugator
with the ring channels”, Opt. Lett. Vol. 20, No. 7, 1456-1458 (1995).
83. L. Zhang*, J. Zhang, et al. “Coherent mutually pumped phase conjugation induced with high-efficiency by self-pumped
phase conjugate reflection", Chin. Phys. Lett. Vol. 12, No. 9, 533-536 (1995).
84. L. Zhang*, J. Zhang, et al. “Origin of self- pumped phase conjugation with a beam incident upon the negative c face
of copper-doped KNSBN”, Chinese Physics Letters, Vol. 13, No. 7, 523-526 (1996).
85. L. Zhang*, J. Zhang, et al. “Mutually pumped phase conjugator: two-arches configuration”, Chinese Physics Letters,
Vol. 14, No. 1, 36-39 (1997).
86. L. Zhang*, J. Zhang, et al. “Mutually pumped phase conjugation of three incoherent beams with a novel photorefractive
crystal” ", Chinese Journal of Lasers, Vol. B5, No. 3, 235 (1996).
87. X. Sun*, J. Zhang, et al. “Mechanism for phase conjugation reflections of two mutually coherent beams from KNSBN:Cu
crystals”, Chinese Journal of Lasers, Vol. B5, No. 5, (1996).
88. S. Bian*, J. Zhang, et al. “Anisotropic diffraction in doped KNSBN photorefractive crystals”, ACTA PHYSICA SINICA, Vol.
42, No. 4, 681-690 (1993).
89. H. Zhao*, J. Zhang, et al. “Broadening of the angle response range with high gain in doped LiNbO3 crystals”, Chinese Science Bulletin, Vol. 39, No. 10, 885-887 (1994).
90. K. Xu*, J. Zhang, et al. “Real-time optical associative memory techniques and devices”, ACTA PHOTONICA SINICA, Vol. 21, No. 5, 73-80 (1992).
91. H. Zhao*, J. Zhang, et al. “Beam coupling based on light crawling and improvement of imaging quality in thin
doped LiNbO3 crystals”, ACTA OPTICA SINICA, Vol. 15, No.2, 235-238 (1995).
92. K. Xu*, J. Zhang, et al. “Realization of holographic neural network model", High Technology Letters, Vol. 1, No. 11, 4-10 (1991).
93. X. Mu*, Z. Shao, J. Zhang et al. “Study of self-built optical path production in Ce-doped BaTiO3 stimulated photorefractive scattering self-pumped phase conjugator", Appl. Phys. Lett. Vol. 67, No. 16, 2275-2277 (1995).
94. L. Zhang*, Z. Shao, J. Zhang et al. “Mutually pumped phase conjugator: sickle configuration” Chinese Physics Letters, Vol.
13, No. 9, 678-681 (1996).
95. L. Zhang*, Z. Shao, J. Zhang et al. “Threshold behaviour and phase conjugation in a mutually pumped phase conjugator”, J. Phys. D: Appl. Phys. Vol. 29, 2389 (1996).
96. H. Xu*, Y. Yuan, J. Zhang et al. “Implementation of holographic associative memory with dynamic thresholding device”, Opt. Commun. Vol. 92, No. 4,5,6, 326-336 (1992).
97. L. Zhang*, Z. Shao, J. Zhang et al. “Sickle mutually pumped phase-conjugate mirror: Theoretical and experimental
demonstration”, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers”, Vol. 36, No. 5A, 2661-2665 (1997).
98. H. Zhao*, W. Sun, J. Zhang, et al. “Real-time image reversion and real-time high- and low-pass filtering”, ACTA OPTICA
SINICA, Vol. 15, No. 6, 734-737 (1995)
99. H. Zhang*, C. Xu, J. Zhang, et al. “Effective carrier density in photorefractive LiNbO3 crystals”, Chinese Journal of Lasers, Vol. A21, No. 7, 567-571 (1994).
Over 30 other papers were published in other journals and proceedings.


相关话题/激光 光学 材料 技术 哈尔滨工业大学