删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

水稻冠层图像分割方法对比研究

本站小编 Free考研考试/2022-01-23

摘要
摘要:水稻冠层信息在自动化管理上具有重要指导意义,但田间多变光照强度环境显著降低了水稻冠层图像分割和信息提取的精度。为降低光照强度的干扰,本文基于RGB、CIEL*a*b*、HSV色彩空间和多色彩空间(包括RGB、CIEL*a*b*和HSV色彩空间)构建水稻冠层图像的色彩特征组合,然后通过支持向量机(SVM)的线性核函数对水稻冠层图像进行分类识别,其分割方法分别定义为rgb-SVM、lab-SVM、hsv-SVM和Multi-SVM。同时,利用此方法对不同光照强度下的水稻冠层图像进行分割,并与常用的ExG&Otsu分割方法进行对比,比较不同方法的分割效果和光强稳健性。结果表明,rgb-SVM的分割效果优于ExG&Otsu方法,但对晴天条件下获取的水稻冠层图像的分割误差仍较大,光强稳健性低;lab-SVM和hsv-SVM分割方法的分割精确度较低,存在一定的欠分割现象;基于多色彩空间和支持向量机的Multi-SVM分割方法的分割效果最佳,该方法对不同光强下获取的水稻冠层图像的分割误差均控制在4.00%以内,具有较好的光强稳健性。因此,基于多色彩空间和支持向量机的Multi-SVM分割方法能够相对准确地将水稻像元从水稻冠层图像中分割出来,且对田间多变光强条件具有一定的稳健性,可为田间水稻生长发育监测和自动化管理提供一定的技术支持。
关键词:水稻/
冠层图像/
光照强度/
图像分割/
色彩空间/
支持向量机
Abstract:Digital image analysis of rice canopy has widely been used for monitoring rice growth, diagnosing rice nitrogen (N) content, controlling pests and predicting rice yield. But the accuracy, stability and reliability of digital image analysis of rice canopy has greatly relied on assumed segmentation precision of rice pixels. There is current a significant progress in auto-segmentation methods for plant images captured indoor or under controlled light conditions. However, it is still hard to segment images of rice canopy taken in outdoor environments with complex and changing illumination conditions. In this paper, we proposed a segmentation method for rice canopy images taken in outdoor environment that improves the accuracy and robustness of illumination of segmentation based on multi-color spaces and support vector machine (SVM) algorithm. The rice canopy images were taken using a digital camera (NikonD90, Nikon Inc., Tokyo, Japan) in August 11st to September 25th 2016 at the largest double-season rice production area in Pearl River Delta. The camera was mounted on a tripod at 1.5 m above rice canopy with straight downward looking posture. Three typical samples taken under different illumination conditions (which changed from sunny days to cloudy days and to overcast days) were treated as test images. The training data (including rice pixels and background pixels) for modeling the support vector machine classifier was randomly picked from the test images. The color features (r, g, b, L*, a*, b*, H, S, V) defined in 3 ordinarily used color spaces (RGB, CIEL*a*b* and HSV) of each pixel were calculated as training data. The SVM classifiers learned from the training data with the color features from RGB, CIEL*a*b*, HSV and multi-color spaces (including RGB, CIEL*a*b*, HSV) were defined as rgb-SVM, lab-SVM, hsv-SVM and Multi-SVM accordingly. The accuracy and robustness of the proposed methods were examined using the test images, which were next compared with ExG&Otsu (excess green index) performance. With the help of Photoshop image editing software, the ground-truth of the rice canopy images was labeled manually and treated as the reference for segmented error calculation, including false positive rate (the rate where segmentation algorithm falsely classed background pixels as rice pixels) and false negative rate (the rate that the segmented algorithm falsely classed the rice pixels as background pixels). The results showed that rgb-SVM algorithm performed better than ExG&Otsu algorithm. While segmentation errors of rgb-SVM algorithm for the images taken on overcast days and cloudy days were respectively 5.76% and 7.74%, that of rgb-SVM algorithm for the images taken on sunny days reached 16.99%. The accuracies of lab-SVM and hsv-SVM algorithms were unstable and high under-segmentation occurred under lab-SVM and hsv-SVM algorithms for images taken on cloudy days and sunny days. Multi-SVM algorithm had the best segmentation results, which were very close to ground-truth images. Specially, segmentation error of Multi-SVM algorithm for images taken on overcast days, cloudy days and sunny days were as low as 3.11%, 3.28% and 3.95%, respectively, which were lower than that for ExG&Otsu algorithm, especially for images taken on sunny days. The results showed that the accuracy of rice canopy extraction using Multi-SVM algorithm was significantly better than that using the other methods, particularly for images taken under high illumination conditions. The Multi-SVM algorithm based on multi-color spaces and support vector machine proposed in this paper accurately segmented and extracted rice pixels in rice canopy images. It was well-suited to the changing illumination in outdoor environment, thus providing valid data support for monitoring field rice growth under natural field conditions and automated rice farming.
Key words:Rice/
Canopy image/
Illumination condition/
Image segmentation/
Color space/
Support vector machine



PDF全文下载地址:

http://www.ecoagri.ac.cn/article/exportPdf?id=6491f3cc-b8c2-45cb-86a9-9bb4076ea3cb
相关话题/图像 空间 自动化 管理 信息

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 养猪微生物发酵床真菌空间分布特性研究
    摘要摘要:微生物发酵床养猪是一种新型环保的养殖方式,发酵床中的微生物在分解消纳、去污除臭方面发挥着重要的作用。为了解大栏养猪微生物发酵床的真菌空间分布特性,通过空间格局采样、分离鉴定发酵床中的真菌并统计其在不同空间的种类与含量;利用空间分布频次、空间分布型指数、多样性指数和生态位特征等指标,评估发酵 ...
    本站小编 Free考研考试 2022-01-23
  • 基于手机相机获取冬小麦冠层数字图像的氮素诊断与推荐施肥研究
    摘要摘要:本文利用不同型号手机、通过不同拍摄角度获取冬小麦拔节期冠层图像,并对其图像进行色彩参数的提取、处理与分析,与传统小麦氮素营养指标进行相关性分析,筛选出敏感色彩参数,对二者进行拟合建模,建立了冬小麦氮素营养诊断指标体系和推荐施肥指标体系,为作物精准施肥提供参考。研究结果表明,在获取冬小麦冠层 ...
    本站小编 Free考研考试 2022-01-23
  • 基于地形因子和随机森林的丘陵区农田土壤有效铁空间分布预测
    摘要摘要:为了掌握丘陵地区农田土壤有效铁含量及其空间分布,本文以重庆市江津区永兴镇内同源成土母质的典型丘陵(2km2)为研究区,采集309个土壤样点,利用普通克里格(OrdinaryKriging,OK)、多元线性回归(MultipleLinearRegression,MLR)、随机森林(Rando ...
    本站小编 Free考研考试 2022-01-23
  • 多尺度下的南方山地丘陵区耕地质量空间自相关分析——以江西省黎川县为例
    摘要摘要:分析不同尺度下的耕地质量空间分布格局,是提高耕地质量与加强耕地保护建设的基础。选取耕地质量等别监测试点县江西省黎川县为研究区,运用加权平均法、变异系数法和空间自相关分析法,以国家级耕地质量指数为空间变量,分别从县级、乡镇级和村级尺度上探讨了耕地质量的空间关联程度及其分异规律。研究结果表明: ...
    本站小编 Free考研考试 2022-01-23
  • 福建耕地土壤磷素富集空间差异及其影响因素
    摘要摘要:利用1:250000福建省耕地土壤类型空间数据库以及1982年1676个和2008年200322个耕地土壤调查样点数据资料,借助GIS技术与灰色关联分析模型,探讨了26年间研究区耕地耕层土壤有效磷富集程度空间差异及其影响因素。结果表明:26年来福建省耕地土壤有效磷呈明显富集趋势,全省92. ...
    本站小编 Free考研考试 2022-01-23
  • 河北省土壤生态学重点实验室纳入河北省学科重点实验室管理序列
    12月17日,河北省科技厅发布《关于河北省有机功能分子重点实验室等34家省级重点实验室通过验收纳入管理序列的通知》,依托中国科学院遗传与发育生物学研究所农业资源研究中心建设的“河北省土壤生态学重点实验室”通过建设期任务验收,纳入河北省学科重点实验室管理序列。河北省土壤生态学重点实验室于2018年12 ...
    本站小编 Free考研考试 2022-01-23
  • 我校收到洲际杯测试赛闭环内志愿者驻地管理团队发来的表扬信
    2021年12月1日,我校北京冬奥会志愿者激励助理张静敏老师带领28名学生志愿者前往张家口赛区参与“相约北京国际雪联跳台滑雪洲际杯和国际雪联北欧两项洲际杯”测试赛志愿服务。师生志愿者不辞辛苦,认真负责,圆满完成服务场馆(国家越野滑雪中心和国家跳台滑雪中心)反兴奋剂领域志愿服务任务,为测试赛的成功举办 ...
    本站小编 Free考研考试 2022-01-23
  • 我校教师在河北省2021年度教师教育教学信息化交流活动中获得佳绩
    2021年5月,我校贯彻落实《河北省教育厅关于举办河北省2021年度教师教育教学信息化交流活动的通知》(冀教电函〔2021〕3号)文件精神,积极组织教师参加大奖赛。本次交流活动共有2200余件作品进入省级评选,教育厅组织专家对入围作品进行了严格评审。??2021年10月20日,河北省电化教育馆网站发 ...
    本站小编 Free考研考试 2022-01-23
  • 科技处同国家科技信息资源综合利用与公共服务中心等单位开展科技合作洽谈
    为了促进学校科技交流与发展,为加强京津冀协同创新发展贡献力量,科技处主动对接北京高水平科研院所。2021年9月16日至17日,科技处处长任立群一行三人前往北京,就科技合作相关事宜同国家科技信息资源综合利用与公共服务中心、中国医学科学院药用植物研究所进行了交流洽谈。??任立群对我校科研的基本情况及特色 ...
    本站小编 Free考研考试 2022-01-23
  • 我校开展教室智慧黑板教学信息化软件使用培训
    为贯彻落实全国教育大会精神,落实教育部《教育信息化2.0行动计划》等相关文件要求,推进“互联网+教育”的具体实施,促进从专用资源向大资源转变,从提升学生信息技术应用能力、向提升信息技术素养转变,教务处于9月15日上午10:00在教学楼101教室进行教学信息化软件使用培训。??本次培训主要对希沃教学管 ...
    本站小编 Free考研考试 2022-01-23