删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
武汉科技大学化学与化工学院导师教师师资介绍简介-龚志伟简介
/2021-08-08
龚志伟简介
姓 名:龚志伟 性 别:男
职 称:副教授 专 业:生物化工
最终学历:博士研究生 最终学位:工学博士 毕业学校:中科院大连化学物理研究所 联系电话:13971688623
Email: gongzhiwei@wust.edu.cn 办公地址:青山区教二楼 2306
龚志伟,博士,副教授,硕士生导师。2014 年毕业于中国科学院大连化学物理研究所,获得生物化工博士学位。2014 年 7
月至今,就职于武汉科技大学化学与化工学院。主要从事固/液废弃物处置与资源化、生物炼制与生物能源、产油酵母分子微生物学相关研究。主持和参与多项国家级、省部级及企业合作项目。
在 Bioresource Technology, Biotechnology for Biofuels, Process Biochemistry, BioResources,
Biotechnology Journal, Applied Biochemistry and Biotechnology, Journal of Biotechnology, Eukaryotic
Cell, Biochemical Engineering Journal, Applied Microbiology and Biotechnology, Green Chemistry,
生物工程学报 等学
术期刊发表论文 30 余篇,他引 700 余次。
申请国家发明专利 10 项,其中 4 项已获授权。受邀担任学术期刊 Applied Energy, Bioresource Technology, Biotechnology for
Biofuels, Biochemical Engineering Journal, Renewable Energy, Applied Microbiology and
Biotechnology, Journal of Hazardous Materials, Journal of Cleaner Production, Energy Conversion and
Management, Industrial Crops and Products, Cellulose, Process Biochemistry,
Enzyme and Microbial Technology, European Journal of Lipid Science and Technology 等审稿人。
招生专业
化学工程与技术(生物化工)化学(化学生物学)
材料与化工
主要研究兴趣
1.固/液废弃物资源化、高值化利用技术
2.生物质解构新技术及机理研究
3.生物质制备生物柴油和功能性油脂关键技术及基础研究
4.产油酵母分子微生物学基础研究
科研项目
[1] 国家自然科学基金青年基金项目:氮消耗旁路诱发产油酵母利用生物质原料过量积累油脂的响应机制研究(编号:51608400),主持
[2] 湖北省教育厅科学技术研究计划青年人才项目:基于碳氮流定向调控的混菌发酵“一锅法”高产微生物油脂研究(编号:Q20161114),主持
[3] 武汉科技大学青年科技骨干培育计划项目:氮消耗旁路诱发产油酵母过量积累油脂的响应机制及规律研究(编号:2016XG002),主持
[4] 武汉科技大学青年科技骨干培育计划项目:生物质混菌发酵“一锅法”制备微生物油脂的过程调控研究(编号:2015XZ013),主持
[5] 中国中医科学院中药研究所合作项目:4 株产油酵母代谢流分析,主持
[6] 中碳平衡(北京)能源科技股份有限公司合作项目:木质纤维素基微生物油脂关键技术开发,主持
[7] 中碳平衡(北京)能源科技股份有限公司合作项目:粗甘油预处理及甘油与木质纤维素共转化制备微生物油脂,主持
[8] 湖北大学省部共建生物催化与酶工程国家重点实验室开放基金:里氏木霉和弯曲隐球酵母混菌发酵“一锅法”高产微生物油脂的过程调控研究(编号: SKLBEE2018015),主持
[9] 国家重点基础研究发展计划(973)项目:木质纤维素资源高效生物降解转化中的关键科学问题研究(编号:2011CB707405),参与
[10]国家自然科学基金面上项目:产油酵母应答磷限制的机制及其应用研究(编号:31170060),参与
[11]国家自然科学基金面上项目:离子液体/有机溶剂混合体系中木质纤维素材料的组分分离、及物理、化学结构调控机理研究(编号:31270637),参与
学术论文
[1] Tang, M., Wang, Y.N., Zhou, W.T., Yang, M., Liu, Y., Gong, Z.W. *, Efficient conversion of
chitin-derived carbon sources into microbial lipid by the oleaginous yeast Cutaneotrichosporon
oleaginosum. Bioresource Technology. 2020, 315, 123897. (* Corresponding author)
[2] Gong, Z.W. *, Wang, X.M., Yuan, W., Wang, Y.N.*, Zhou, W.T., Wang, G.H., Liu, Y. Fed-batch
enzymatic hydrolysis of alkaline organosolv pretreated corn stover facilitating high concentrations
and yields of fermentable sugars for microbial lipid production. Biotechnology for Biofuels. 2020,
13, 13.
[3] Gou, Q.L., Tang, M., Wang, Y.N., Zhou, W.T., Liu, Y., Gong, Z.W. *,
Deficiency of β-glucosidase beneficial for the simultaneous saccharification and lipid production
by the oleaginous yeast Lipomyces starkeyi. Applied Biochemistry and Biotechnology. 2020, 190:
747–758.
[4] Zhou, W.T., Tang, M., Zou, T., Peng, N., Zhao, M., Gong, Z.W. *, Phosphate removal combined
with acetate supplementation enhances lipid production from
water hyacinth by Cutaneotrichosporon oleaginosum. Biotechnology for Biofuels. 2019, 12, 148.
[5] Yuan, W., Gong, Z.W.*, Wang, G.H., Zhou, W.T., Liu, Y., Wang, X.M., Zhao.
M. Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility.
Bioresource Technology. 2018, 265: 464–470.
[6] Tang, M., Zhou, W.T., Liu, Y., Yan, J.B., Gong, Z.W.* A two-stage process facilitating
microbial lipid production from N-acetylglucosamine by Cryptococcus curvatus cultured under
non-sterile conditions. Bioresource Technology. 2018, 258: 255–262.
[7] Gong, Z.W., Nielsen, J.*, Zhou, Y.J.* Engineering robustness of microbial cell factories.
Biotechnology Journal. 2017, 12(10), 1700014.
[8] Zhou, W.T., Gong, Z.W.*, Zhang, L.F., Liu, Y., Yan, J.B., Zhao, M. Feasibility of lipid
production from waste paper by the oleaginous yeast Cryptococcus curvatus. BioResources. 2017,
12(3):5249–5263.
[9] Gong, Z.W.*, Zhou, W.T., Shen, H.W., Zhao, Z.K., Yang, Z.H., Yan, J.B., Zhao.
M. Co-utilization of corn stover hydrolysates and biodiesel-derived glycerol by Cryptococcus
curvatus for lipid production. Bioresource Technology. 2016, 219: 552–558.
[10]Gong, Z.W.*, Zhou, W.T., Shen, H.W., Yang, Z.H., Wang, G.H., Zuo, Z.Y., Hou, Y.L., Zhao, Z.K.
Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich
biomass hydrolysates. Bioresource Technology. 2016, 207: 102–108.
[11]Gong, Z.W.*, Shen, H.W., Zhou, W.T., Wang, Y.D., Yang, X.B., Zhao, Z.K.* Efficient conversion
of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnology for Biofuels,
2015, 8: 189.
[12]Wang, Y.D.#, Gong, Z.W. #, Yang, X.B., Shen, H.W., Wang, Q., Wang, J.H.*, Zhao, Z.K.* Microbial
lipid production from pectin-derived carbohydrates by
oleaginous yeasts. Process Biochemistry, 2015, 50: 1097–1102. (# equal contribution)
[13]Gong, Z.W., Shen, H.W., Yang, X.B., Wang, Q., Xie, H.B., Zhao, Z.K.* Lipid production from corn
stover by the oleaginous yeast Cryptococcus curvatus. Biotechnology for Biofuels, 2014, 7: 158.
[14]Gong, Z.W., Wang, Q., Shen, H.W., Wang, L., Xie, H.B., Zhao, Z.K.* Conversion of
biomass-derived oligosaccharides into lipids. Biotechnology for Biofuels, 2014, 7: 13.
[15]Gong, Z.W., Shen, H.W., Wang, Q., Yang, X.B., Xie, H.B., Zhao, Z.K.* Efficient conversion of
biomass into lipids by using the simultaneous saccharification and enhanced lipid production
process. Biotechnology for Biofuels, 2013, 6: 36.
[16]Gong, Z.W., Wang, Q., Shen, H.W., Hu, C.M., Jin, G.J., Zhao, Z.K.*
Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresource
Technology, 2012, 117: 20–24.
[17]Shen, H.W., Gong, Z.W., Yang, X.B., Jin, G.J., Bai, F.W., Zhao, Z.K. Kinetics of continuous
cultivation of the oleaginous yeast Rhodosporidium toruloides. Journal of Biotechnology, 2013, 168:
85–89.
[18]Shen, H.W., Zhang, X.B., Gong, Z.W., Wang, Y.N., Yu, X., Yang, X.B., Zhao,
Z.K. Compositional profiles of Rhodosporidium toruloidescells under nutrient limitation. Applied
Microbiology and Biotechnology, 2017, 101: 3801–3809.
[19]Zhu, Z.W., Ding, Y.F., Gong, Z.W., Yang, L., Zhang, S.F., Zhang, C.Y., Lin, X.P., Shen, H.W.,
Zou, H.F., Xie, Z.S., Yang, F.Q., Zhao, X.D., Liu, P.S., Zhao,
Z.K. Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides.
Eukaryotic Cell, 2015. 14: 252–264.
[20]Yang, X.B., Jin, G.J., Gong, Z.W., Shen, H.W., Bai, F.W., Zhao, Z.K. Recycling microbial lipid
production wastes to cultivate oleaginous yeasts. Bioresource Technology, 2015, 175: 91–96.
[21]Yang, X.B., Jin, G.J., Gong, Z.W., Shen, H.W., Bai, F.W., Zhao, Z.K. Recycling
biodiesel-derived glycerol by the oleaginous yeast Rhodosporidium toruloides Y4 through the
two-stage lipid production process. Biochemical Engineering Journal, 2014, 91: 86–91.
[22]Yang, X.B., Jin, G.J., Gong, Z.W., Shen, H.W., Song, Y.H., Bai, F.W., Zhao, Z.K. Simultaneous
utilization of glucose and mannose from spent yeast cell mass for lipid production by Lipomyces
starkeyi. Bioresource Technology, 2014. 158: 383–387.
[23]Huang, Q.T., Wang, Q., Gong, Z.W., Jin, G.J., Shen, H.W., Xiao, S., Xie, H.B., Ye, S.H., Wang,
J.H., Zhao, Z.K. Effects of selected ionic liquids on lipid production by the oleaginous yeast
Rhodosporidium toruloides. Bioresource Technology, 2013, 130: 339–344.
[24]Xie, H.B., Shen, H.W., Gong, Z.W., Wang, Q., Zhao, Z.K., Bai, F.W. Enzymatic hydrolysates of
corn stover pretreated by the N-methylpyrrolidone/ionic liquids solution for microbial lipid
production. Green Chemistry, 2012, 14(4): 1202–1210.
[25]Luo, W., Deng, X.X., Gong, Z.W., Yang, Z.H. Promotion of the microalgal photo-biocatalytic
asymmetric reduction of prochiral ketone by NADPH metabolic regulation. Asia-Pacific Journal of
Chemical Engineering, 2016, 11: 533–538.
[26]Zeng, R., Hu, Q., Yin, X.Y., Huang, H., Yan, J.B., Gong, Z.W., Yang, Z.H. Cloning a novel
endo-1,4-β-D-glucanase gene from Trichoderma virens and heterologous expression in E. coli. AMB
Express, 2016, 6, 108.
[27]Luo, W., Deng, X.X., Huo, J., Ruan, T., Gong, Z.W., Yan, J.B., Yang, Z.H., Quan, C., Cui, Z.F.
Strengthening NADPH regeneration for improving photo-biocatalytic ketones asymmetric reduction
reaction by Synechocystis through overexpression of FNR. Catalysis Letters, 2018, 148, 1714–1722.
[28]Peng, N., Ding, X., Wang, Z., Cheng, Y., Gong, Z.W., Xu, X., Gao, X., Cai, Q., Huang, S., Liu,
Y. Novel dual responsive alginate-based magnetic nanogels for onco-theranostics. Carbohydrate
polymers, 2019, 204, 32–41.
[29]Luo, J., Cheng, Y., He, X. Y., Liu, Y., Peng, N., Gong, Z. W., Wu, K., Zou, T. Self-assembled
CpG oligodeoxynucleotides conjugated hollow gold nanospheres to enhance cancer-associated
immunostimulation. Colloids and Surfaces B: Biointerfaces, 2019, 175, 248–255.
[30]Luo, J., Cheng, Y., Gong, Z.W., Wu, K., Zhou, Y., Chen, H.X., Gauthier, M., Cheng, Y.Z., Liang,
J., Zou, T. Self-assembled peptide functionalized gold nanopolyhedrons with excellent chiral
optical properties, Langmuir, 2020, 36, 600–608.
发明专利
[1] 赵宗保, 龚志伟, 沈宏伟. 一种产油微生物的培养方法. 专利号: ZL 201210020546.4. 授权日期: 2015.04.29
[2] 龚志伟, 赵觅. 粗甘油与木质纤维素水解液共转化生产微生物油脂的方法. 专利号: ZL 201610012661.5. 授权日期: 2019.07.05
[3] 龚志伟, 赵觅, 高芳, 颜家保, 周文婷. 一种基于碳氮流定向调控的混菌发酵“一锅法”生产微生物油脂的方法. 专利号: ZL 201611028482.7. 授权日期:
2019.08.23
[4] 龚志伟, 赵觅. 一种利用木质纤维素原料生产生物柴油的方法. 专利号:
ZL 201610263482.9. 授权日期: 2020.07.24
[5] 龚志伟, 唐谋,赵觅, 刘义. 一种 N-乙酰-D-葡糖胺综合利用的方法. 专利号: 201710953786.2.
[6] 龚志伟, 苟庆玲,赵觅, 周文婷,刘义. 一种通过共利用淀粉与木质纤维素原料产油脂的方法. 专利号: 201910716485.7.
[7] 龚志伟, 张楚楹,王雅南,刘义. 一种基于后预处理的中药渣综合利用的方法. 专利号: 202011495051.8.
[8] 龚志伟, 刘艳涛,赵觅,何能德,周文婷,刘义. 一种利用富氮生物质产纤维素酶和油脂的方法. 专利号: 202110037087.X.
[9] 龚志伟, 王雪敏,周文婷,赵觅,刘义. 一种利用秸秆资源制备微生物油脂的方法. 专利号: 202110161078.1.
[10]龚志伟, 刘娟,周文婷, 刘义, 赵觅,何能德. 一种利用 VFAs 和木质纤维素原料生产微生物油脂的方法. 专利号: 202110223951.5.
学术奖励
1. 赵宗保, 张素芳, 龚志伟, 朱志伟, 沈宏伟, 吴思国, 赵鑫, 胡翠敏. 微生物油脂技术,大连市技术发明一等奖,证书号 2018F-1-01-R03.