删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

武汉理工大学土木工程与建筑学院导师教师师资介绍简介-楼铁炯

本站小编 Free考研考试/2021-07-26


姓名:楼铁炯
性别:男
出生年月:1974年1月
职称:研究员
学历:博士研究生
学位:工学博士
电话:**
邮箱:tjlou@whut.edu.cn

个人简历
1995年宁波大学土木工程系本科毕业,2002和2005年获浙江大学力学专业硕士和博士学位,在意大利都灵理工大学(Fellowship for Foreign Researchers)、葡萄牙科英布拉大学(FCT Research Fellowship)及英国南安普顿大学(Marie Sklodowska-Curie Individual Fellowship)共10余年海外科研工作经历,2016年12月武汉理工大学研究员。主要从事FRP复合材料结构、钢筋混凝土及预应力混凝土结构、钢-混凝土组合结构的研究工作。
国际期刊论文1. T. Lou, S. Wu, T.L. Karavasilis, B. Chen*. (2021). Long-term deflection prediction in steel-concrete composite beams. Steel and Composite Structures, accepted.
2. T. Lou, T.L. Karavasilis, B. Chen*. (2021). Assessment of second-order effect in externally prestessed steel-concrete composite beams. ASCE Journal of Bridge Engineering, accepted.
3. M. Shadlou, W. Sun*, T. Lou. (2021). A novel FRP composite with high-strength, high extensibility in tension: 1-D constitutive relation. Composite Structures, 261: 113332.
4. W. Sun, T. Lou*, M. Achintha. (2021). A novel strong and durable near-surface mounted (NSM) FRP method with cost-effective fillers. Composite Structures, 255: 112952.
5. M. Pang, Z. Li, T. Lou*. (2020). Numerical study of using FRP and steel rebars in simply supported prestressed concrete beams with external FRP tendons. Polymers, 12: 2773.
6. T. Lou, C. Peng, D. Min, W. Sun*. (2020). Moment redistribution in unbonded prestressed concrete members: Proposed modification of ACI equation. ACI Structural Journal, 117(6): 71-80.
7. T. Lou, C. Peng, T.L. Karavasilis, D. Min, W. Sun*. (2020). Moment redistribution versus neutral axis depth in continuous PSC beams with external CFRP tendons. Engineering Structures, 209: 109927.
8. T. Lou, D. Min, W. Sun, B. Chen*. (2020). Numerical assessment of continuous prestressed NSC and HSC members with external CFRP tendons. Composite Structures, 234: 111671.
9. T. Lou, S.M.R. Lopes, A.V. Lopes, W. Sun*. (2020). A comprehensive FE model for slender HSC columns under biaxial eccentric loads. Structural Engineering and Mechanics, 73(1): 17-25.
10. W. Sun, T. He, X. Wang, J. Zhang, T. Lou*. (2019). Developing an anchored near-surface mounted (NSM) FRP system for fuller use of FRP material with less epoxy filler. Composite Structures, 226: 111251.
11. T. Lou*, T.L. Karavasilis. (2019). Numerical evaluation of prestressed steel-concrete composite girders with external FRP or steel tendons. Journal of Constructional Steel Research, 162: 105698.
12. T. Lou*, T.L. Karavasilis. (2019). Numerical assessment of the nonlinear behavior of continuous prestressed steel-concrete composite beams. Engineering Structures, 190: 116-127.
13. T. Lou*, T.L. Karavasilis. (2018). Time-dependent assessment and deflection prediction of prestressed concrete beams with unbonded CFRP tendons. Composite Structures, 194: 365-376.
14. T. Lou*, M. Liu, S.M.R. Lopes, A.V. Lopes. (2017). Moment redistribution in two-span prestressed NSC and HSC beams. Materials and Structures, 50: 246.
15. T. Lou*, S.M.R. Lopes, A.V. Lopes. (2017). Effect of linear transformation on nonlinear behavior of continuous prestressed beams with external FRP cables. Engineering Structures, 147: 410-424.
16. T. Lou*, M. Liu, S.M.R. Lopes, A.V. Lopes. (2017). Effect of bond on flexure of concrete beams prestressed with FRP tendons. Composite Structures, 173: 168-176.
17. T. Lou*, S.M.R. Lopes, A.V. Lopes. (2017). Effect of relative stiffness on moment redistribution in reinforced high-strength concrete beams. Magazine of Concrete Research, 69(14): 716-727.
18. T. Lou*, S.M.R. Lopes, A.V. Lopes. (2016). Response of continuous concrete beams internally prestressed with unbonded FRP and steel tendons. Composite Structures, 154: 92-105.
19. T. Lou*, S.M.R. Lopes, A.V. Lopes. (2016). Time-dependent behavior of concrete beams prestressed with bonded AFRP tendons. Composites Part B: Engineering, 97: 1-8.
20. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2016). Numerical modeling of externally prestressed steel-concrete composite beams. Journal of Constructional Steel Research, 121: 229-236.
21. T. Lou*, S.M.R. Lopes, A.V. Lopes. (2015). FE analysis of short- and long-term behavior of simply supported slender prestressed concrete columns under eccentric end axial loads causing uniaxial bending. Engineering Structures, 85: 52-62.
22. T. Lou*, S.M.R. Lopes, A.V. Lopes. (2015). A comparative study of continuous beams prestressed with bonded FRP and steel tendons. Composite Structures, 124: 100-110.
23. T. Lou*, S.M.R. Lopes, A.V. Lopes. (2015). Neutral axis depth and moment redistribution in FRP and steel reinforced concrete continuous beams. Composites Part B: Engineering, 70: 44-52.
24. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2015). Redistribution of moments in reinforced high-strength concrete beams with and without confinement. Structural Engineering and Mechanics, 55(2): 379-398.
25. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2015). Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams. Computers and Concrete, 15(3): 373-389.
26. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2015). Interaction between time-dependent and second-order effects of externally posttensioned members. ASCE Journal of Bridge Engineering, 20(11), **.
27. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2014). Evaluation of moment redistribution in normal-strength and high-strength reinforced concrete beams. ASCE Journal of Structural Engineering, 14(10), **.
28. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2014). Factors affecting moment redistribution at ultimate in continuous beams prestressed with external CFRP tendons. Composites Part B: Engineering, 66: 136-146.
29. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2014). Flexure of continuous HSC beams with external CFRP tendons: Effects of fibre elastic modulus and steel ratio. Composite Structures, 116: 29-37.
30. T. Lou*, S.M.R. Lopes, A.V. Lopes. (2014). A finite element model to simulate long-term behavior of prestressed concrete girders. Finite Elements in Analysis and Design, 81: 48-56.
31. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2014). External CFRP tendon members: Secondary reactions and moment redistribution. Composites Part B: Engineering, 57: 250-261.
32. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2014). FE modeling of inelastic behavior of reinforced high-strength concrete continuous beams. Structural Engineering and Mechanics, 49(3): 373-393.
33. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2013). Flexural response of continuous concrete beams prestressed with external tendons. ASCE Journal of Bridge Engineering, 18(6): 525-537.
34. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2013). Nonlinear and time-dependent analysis of continuous unbonded prestressed concrete beams. Computers & Structures, 119: 166-176.
35. T. Lou, S.M.R. Lopes*, A.V. Lopes. (2012). Numerical analysis of behaviour of concrete beams with external FRP tendons. Construction and Building Materials, 35: 970-978.
36. T. Lou*, A.V. Lopes, S.M.R. Lopes. (2012). Influence of span-depth ratio on behavior of externally prestressed concrete beams. ACI Structural Journal, 109(5): 687-695.
37. T. Lou*, Y. Xiang. (2010). Numerical analysis of second-order effects of externally prestressed concrete beams. Structural Engineering and Mechanics, 35(5): 631-643.
38. T. Lou*, Y. Xiang. (2008). Numerical method for biaxially loaded reinforced and prestressed concrete slender columns with arbitrary section. Structural Engineering and Mechanics, 28(5): 587-601.
39. M. Pang, T. Lou*, M. Zhao. (2008). On modal energy in civil structural control. Journal of Zhejiang University-Science A, 9(7): 878-887.
40. T. Lou*, Y. Xiang. (2007). Effects of ordinary tension reinforcement on the response of beams with unbonded tendons. Advances in Structural Engineering, 10(1): 95-109.
41. T. Lou*, Y. Xiang. (2006). Finite element modeling of concrete beams prestressed with external tendons. Engineering Structures, 28(14): 191


相关话题/土木工程 武汉理工大学