删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西北师范大学数学与统计学院导师教师师资介绍简介-张旭萍老师简介

本站小编 Free考研考试/2021-07-16











张旭萍,女,汉族,中共党员,1986年9月生,甘肃景泰人。2010年6月毕业于西北师范大学数学系; 2010年6月在西北师范大学获非线性分析方向硕士学位;2018年6月在西北师范大学获非线性分析方向博士学位。现为西北师范大学数学与统计学院副教授,硕士研究生导师。兼任美国数学会《Math Review》评论员。主要从事非线性泛函分析、非局部发展方程及时滞发展的研究,在权威学术刊物 《Discrete Contin. Dyn. Syst. Ser. B》、 《Commun. Pure Appl. Anal.》、 《Comput. Math. Appl.》、《J. Fixed Point Theory Appl.》、《Int. J. Nonlinear Sci. Numer. Simul.》、《Mediterr. J. Math》等上发表学术论文20余篇。主持完成甘肃省高等学校科研项目1项;参与完成国家自然科学基金项目3项、甘肃省自然科学基金项目2项;现主持甘肃省高等学校科研项目1项、西北师范大学青年教师科研能力提升计划骨干项目1项;指导学生获高教社杯全国大学生数学建模竞赛甘肃赛区本科组一等奖1次;作为骨干成员获甘肃省高等学校科学研究优秀成果三等奖1次。


科研项目
[1]主持甘肃省高等学校科研项目“分数阶脉冲发展方程的单调迭代方法”(项目编号: 2015A-213, 起止年月:2015.07-2016.06).
[2]主持甘肃省高等学校科研项目“抽象脉冲时滞发展方程非局部问题的可解性及其应用”(项目编号: 2019B-213, 起止年月:2019.07-2021.06).
[3]主持西北师范大学青年教师科研能力提升计划项目“时滞发展方程非局部问题的可解性研究”(项目编号: NWNU-LKQN2019-13, 起止年月:2020.01-2022.12).
[4] 参加国家自然科学基金青年项目“抽象分数阶时滞发展方程非局部问题可控性的研究”(项目编号:**, 起止年月:2018.01-2020.12).
[5] 参加国家自然科学基金青年项目“两类非线性薛定谔方程的最优控制问题”(项目编号:**, 起止年月:2017.01-2019.12).
[6] 参加国家自然科学基金地区项目“几类完全形式的非线性边值问题解的存在性及多重性”(项目编号:**, 起止年月:2017.01-2020.12).
[7] 参加国家自然科学基金地区项目“抽象时滞发展方程周期解的存在性及渐近性态”(项目编号: **, 起讫年月: 2013.01--2016.12).

代表性学术论文
[1] Xuping Zhang*, Yongxiang Li, Pengyu Chen, Existence of extremal mild solutions for the initial value problem of evolution equations with non-instantaneous impulses, Journal of Fixed Point Theory and Applications, 19(4) (2017) 3013-3027.
[2] Xuping Zhang*, Yongxiang Li, Existence of solutions for delay evolution equations with nonlocal conditions, Open Mathematics, 15 (2017) 616-627 .[3]Xuping Zhang*, Yongxiang Li, Fractional retarded evolution equations withmeasureof noncompactness subjected to mixed nonlocal plus local initial conditions, Int. J. Nonlinear Sci. Numer. Simul., 19(1)(2018) 69-81.[4] Xuping Zhang*, Pengyu Chen, Ahmed Abdelmonem, Yongxiang Li, Fractional stochastic evolution equations with nonlocal initial conditions and noncompact semigroups, Stochastics, 90(7)(2018) 1005-1022.[5] Xuping Zhang*, Qiyu Chen, Yongxiang Li, Existence and regularity of mild solutions in some interpolation spaces for functional partial differential equations with nonlocal initial conditions, Open Mathematics, 16 (2018) 113-126.[6]Xuping Zhang*, Pengyu Chen, Yongxiang Li, Fractional retarded differentialequations involving mixed nonlocal plus local initial conditions, Numer. Funct. Anal. Optim., 40(14)(2019) 1678-1702.[7] Xuping Zhang*, Haide Gou,Yongxiang Li, Existence results of mild solutions for impulsive fractional integrodifferential evolution equations with nonlocal conditions, Int. J. Nonlinear Sci. Numer. Simul., 20(1)(2019)1-16.[8] Xuping Zhang*, Pengyu Chen, Ahmed Abdelmonem, Yongxiang Li, Mild solution of stochastic partial differential equation with nonlocal conditions and noncompact semigroups, Math. Slovaca, 69(1) (2019) 111-124.[9] Xuping Zhang*, Zhen Xin, Existence, Uniqueness and UHR Stability of Solutions to Nonlinear Ordinary Differential Equations with Noninstantaneous Impulses, International Journal of Nonlinear Sciences and Numerical Simulation, 21(2) (2020) 195-203.[10] Xuping Zhang*, Pengyu Chen, Nontrivial solutions for Neumann boundary value problem of second order impulsive integro-differential equations in ordered Banach spaces, Dynam. Systems Appl.,24 (4) (2015)439-450.
[11]Xuping Zhang*, Pengyu Chen, Fractional evolution equation nonlocal problems with noncompact semigroups, Opuscula Mathematica, 36(1) (2016) 123-137.
[12]Pengyu Chen*, Yongxiang Li, Xuping Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B, doi:10.3934/dcdsb. **.[13] Pengyu Chen*, Xuping Zhang, Yongxiang Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal.,17(5)(2018)1975-1992.[14] Pengyu Chen, Xuping Zhang*, Yongxiang Li,Study on fractional non-autonomous evolution equations with delay,Comput. Math. Appl.,73(5) (2017)794-803.[15] Pengyu Chen*, Xuping Zhang, Yongxiang Li, Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Calcu. Appl. Anal., 19(6)(2016) 1507-1526.[16]Pengyu Chen*, Xuping Zhang, Yongxiang Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions viaresolvent operators, Fract. Calcu. Appl. Anal.,23(1):268-291, 2020.




相关话题/统计学院 数学