删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国科学院西北生态环境资源研究院导师教师师资介绍简介-李潮流

本站小编 Free考研考试/2021-07-19

姓名:
李潮流 性别:

专家类别:
博士生导师 学历:
博士研究生
电话:
传真:

电子邮件:
lichaoliuli@126.com 个人主页:
http://people.ucas.ac.cn/~lichaoliu
邮政编码:
730000 通讯地址:
甘肃省兰州市东岗西路320号

简历: 李潮流, 男,1978年生,中国科学院西北生态环境资源研究院研究员(2020年6月-),青藏高原地球科学卓越创新中心科研骨干。前后主持基金委青年和面上项目5项,正在参与中科院先导专项A(丝路环境)和青藏高原第二次综合科考的项目。目前已协助课题组长培养博士生1名,硕士生4名,作为导师正在培养硕士生3名。从2005年至今一直从事与青藏高原大气环境相关的研究,具有丰富的野外经验和组织协调能力。近期主要的工作包括:通过对雪冰和水体碳质组分,尤其是黑碳和溶解态有机碳的同位素组成和吸光特征的研究。主要科研成绩包括:① 参与建立了跨越喜马拉雅山脉和青藏高原的大气气溶胶观测网络,对喜马拉雅山脉中段两条监测断面及青藏高原的8个台站的气溶胶样品和8条冰川的雪坑样品中黑碳同位素组成进行了研究,首次给出了该地区黑碳来源的碳同位素组成的证据,为相关国家制定黑碳减排政策提供了明确的指导; ② 通过实验对比,对青藏高原和喜马拉雅地区的大气黑碳含量和沉降进行了评估和订正,从而得到了更接近实际状况的大气黑碳含量和沉降数据,为以后在青藏高原其它地区的相关研究提供了重要的方法参考和数据参照; ③ 通过一系列研究,细致阐述了青藏高原从受人类活动影响严重的城市到高海拔冰川区的溶解态有机碳的含量、湿沉降通量和吸光特征,发现含量和通量都随着海拔的升高及从城市到偏远地区存在明显的降低趋势,同时还发现在不同地点,降水中溶解态有机碳的吸光能力都低于该地区的气溶胶中的相应值。上述相关成果的文章已经发表在Nature Communications,Atmospheric Chemistry and Physic和Environment Science & Technology等SCI期刊上。目前以第一或通讯作者发表SCI论文46篇。其中以第一作者在Nature Communications上发表的关于青藏高原黑碳来源的研究成果被国内外多家媒体广泛报导,并被同行多次引用,属于ESI top 1%的高被引论文。
教育经历:
2004年9月-2007年7月 中国科学院青藏高原研究所 博士
2001年9月-2004年7月 甘肃农业大学草业工程学院 硕士
1997年9月-2001年7月 甘肃农业大学草业工程学院 学士
工作经历:
2012年6月-2013年6月 美国耶鲁大学 访问****
2020年6月- 西北生态环境资源研究院 研究员
2010年12月-2020年6月 中国科学院青藏高原研究所 副研究员
2009年1月-2010年1月 加拿大曼尼托巴大学 访问****
2007年7月-2010年12月 中国科学院青藏高原研究所 助理研究员




研究领域: 自然地理学(大气环境)

职称: 研究员

职务:

获奖及荣誉:

代表论著: 1.Li, C*., Yan, F., Kang, S., Yan, C., Hu, Z., Chen, P., Gao, S., Zhang, C., He, C., Kaspari, S., 2021. Carbonaceous matter in the atmosphere and glaciers of the Himalayas and the Tibetan plateau: an investigative review. Environment international 146, 106281.
2.Li, C*., Zhang, C., Kang, S., Gustafsson, ?., 2021. Quantification and implication of measurement bias of ambient atmospheric BC concentration. Atmospheric Environment 249, 118244.
3.Li C*, Han X, Kang S, Yan F, Chen P, Hu Z, Yang J, Ciren D, Gao S, Sillanp?? M. 2019. Heavy near-surface PM2. 5 pollution in Lhasa, China during a relatively static winter period. Chemosphere 214:314-318.
4.Li C*, Kang S, Yan F. 2018. Importance of Local Black Carbon Emissions to the Fate of Glaciers of the Third Pole. Environmental Science & Technology 52:14027?14028.
5.Li, C*., Chen, P., Kang, S*., Yan, F., Tripathee, L., Wu, G., Qu, B., Sillanp??, M., Yang, D., Dittmar, T., Stubbins, A*., Peter, A., 2018. Fossil fuel combustion emission from South Asia influences precipitation dissolved organic carbon reaching the remote Tibetan Plateau: isotopic and Molecular evidence. Journal of Geophysical Research: Atmospheres. 123 (art. D028181):6248-6258.
6.Li, C*., Yan, F., Kang, S., Chen, P., Hu, Z., Han, X., Zhang, G., Hong, Y., Zhejing, z., Jiwei, L., Bing, C., Gao, S., Qu, B., Sillanp??, M., 2017. Reevaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition. Atmospheric Chemistry and Physics, 17, 11899-11912.
7.Li, C*., Yan, F., Kang, S., Chen, P., Hu, Z., Han, X., Zhang, G., Gao, S., Qu, B. and Sillanp??, M. (2017) Deposition and light absorption characteristics of precipitation dissolved organic carbon (DOC) at three remote stations in the Himalayas and Tibetan Plateau, China. Science of The Total Environment 605, 1039-1046.
8.Li, C., Bosch, C., Kang, S*., Andersson, A., Chen, P., Zhang, Q., Cong, Z., Chen, B., Qin, D., Gustafsson, ?*., 2016. Sources of Black Carbon to the Himalayan-Tibetan Plateau glaciers. Nature Communications, 7, 12574.
9.Li, C*., Chen, P., Kang, S., Yan, F., Hu, Z., Qu, B., Sillanp??, M., 2016. Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau. Atmospheric Environment 127, 340-346.
10.Li, C*., Yan, F., Kang, S., Chen, P., Qu, B., Hu, Z., Sillanp??, M., 2016. Concentration, sources and flux of dissolved organic carbon of precipitation at Lhasa city, the Tibetan Plateau. Environmental Science and Pollution Research 3, 12915-12921.
11.Li, C*., Chen, P., Kang, S*., Yan, F., Li, X., Qu, B., Sillanp??, M., 2016. Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau. Atmospheric Environment 141, 203-208.
12.Li, C*., Yan, F., Kang, S., Chen, P., Hu, Z., Gao, S., Qu, B., Sillanp??, M., 2016. Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China. Atmospheric Environment, 79-85.
13.Li, C., Kang, S*., Chen, P., Zhang, Q., Mi, J., Gao, S., Sillanp??, M., 2014. Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China. Environmental Earth Sciences 71, 4143-4148.
14.Li, C., Kang, S*., Chen, P., Zhang, Q., Fang, G.C., 2012. Characterizations of particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan tents of south Tibetan Plateau, China. Environmental Science and Pollution Research, 1-9.
15.Li, C., Kang, S*., Chen, P., Zhang, Q., Guo, J., Mi, J., Basang, P., Luosang, Q., Smith, K.R., 2012. Personal PM 2.5 and indoor CO in nomadic tents using open and chimney biomass stoves on the Tibetan Plateau. Atmospheric Environment 59, 207-213.
16.Li, C., Kang, S*., Zhang, Q., Gao, S., 2012. Geochemical evidence on the source regions of Tibetan Plateau dusts during non-monsoon period in 2008/09. Atmospheric Environment 59, 382-388.
17.Li, C., Kang, S*., Zhang, Q., Sharma, C.M., 2012. Effectiveness of rare earth elements constrain on different materials: a case study in central Asia. Environmental Earth Sciences 67, 1415-1421.
18.Li, C., Kang, S*., Zhang, Q., Gao, S., Sharma, C.M., 2010. Heavy metals in sediments of the Yarlung Tsangbo and its connection with the arsenic problem in the Ganges–Brahmaputra Basin. Environmental Geochemistry and Health 33, 23-32.
19.Li, C., Kang, S*., Zhang, Q., 2009. Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environmental Pollution 157, 2261-2265.
20.Li, C., Kang, S*., Zhang, Q., Wang, F., 2009. Rare earth elements in the surface sediments of the Yarlung Tsangbo (Upper Brahmaputra River) sediments, southern Tibetan Plateau. Quaternary International 208, 151-157.
21.Li, C., Kang, S*., Wang, X., Ajmone-Marsan, F., Zhang, Q., 2008. Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin, Tibetan Plateau. Environmental Geology 53, 1433-1440.
22.Li, C., Kang, S*., Cong, Z., 2007. Elemental composition of aerosols collected in the glacier area on Nyainqentanglha Range, Tibetan Plateau, during summer monsoon season. Chinese Science Bulletin 52, 3436-3442.
23.Li, C., Kang, S*., Zhang, Q., Kaspari, S., 2007. Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmospheric Research 85, 351-360.
24.Li, C., Kang, S., 2006. Review of the studies on climate change since the last inter-glacial period on the Tibetan Plateau. Journal of Geographical Sciences 16, 337-345.
25.Chen, M*., Zeng, C., Zhang, F., Kang, S. and Li, C*., 2020. Characteristics of dissolved organic matter from a trans-boundary Himalayan watershed: relationships with land use, elevation, and hydrology. ACS Earth and Space Chemistry.
26.Gautam, S., Yan, F., Kang, S., Han, X., Neupane, B., Chen, P., Hu, Z., Sillanp??, M. and Li, C*., 2020. Black carbon in surface soil of the Himalayas and Tibetan Plateau and its contribution to total black carbon deposition at glacial region. Environmental Science and Pollution Research, 27(3): 2670-2676.
27.Hu, Z., Kang, S*., He, X., Yan, F., Zhang, Y., Chen, P., Li, X., Gao, S. and Li, C*., 2020. Carbonaceous matter in glacier at the headwaters of the Yangtze River: Concentration, sources and fractionation during the melting process. Journal of Environmental Sciences, 87: 389-397.
28.Yan, F., Wang, P., Kang, S., Chen, P., Hu, Z., Han, X., Sillanp??, M. and Li, C*., 2020. High particulate carbon deposition in Lhasa—a typical city in the Himalayan–Tibetan Plateau—due to local contributions. Chemosphere: 125843.
29.Yan, F., He, C., Kang, S., Chen, P., Hu, Z., Han X., Gautam S., Yan, C., Zheng, M., Sillanp??, M., Raymond PA., Li, C*. Deposition of organic and black carbon: direct measurements at three remote stations in the Himalayas and Tibetan Plateau. Journal of Geophysical Research: Atmospheres. 2019.
30.Chen, M*., Li, C*. Zeng, F. Zhang, P. A. Raymond, and J. Hur*, Immobilization of relic anthropogenic dissolved organic matter from alpine rivers in the Himalayan-Tibetan Plateau in winter, Water Research, 2019, 160, 97-106.
31.Yan F, Sillanp?? M, Kang S*, Aho KS, Qu B, Wei D, Li X, Li C*, Raymond PA. Lakes on the Tibetan Plateau as conduits of greenhouse gases to the atmosphere. Journal of Geophysical Research: Biogeosciences. 2018.
32.Yan, F., Kang, S., Li, C*., Zhang, Y., Qin, X., Li, Y., Zhang, X., Hu, Z., Chen, P., Li, X., Qu, B., Sillanp??, M., Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau. The Cryosphere 2016. 10, 2611-2621.
33.Hu, Z., Kang, S*., Yan, F., Zhang, Y., Li, Y., Chen, P., Qin, X., Wang, K., Gao, S., Li, C*., 2018. Dissolved organic carbon fractionation accelerates glacier-melting: A case study in the northern Tibetan Plateau. Science of The Total Environment 627, 579-585.
34.Hu, Z., Kang, S., Li, C*., Yan, F., Chen, P., Gao, S., Wang, Z., Zhang, Y. and Sillanpaa, M. (2017) Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau. Environmental Science and Pollution Research 24, 15369-15378.
35.Qu, B*., Sillanp??, M., Kang, S., Yan, F., Li, Z., Zhang, H. and Li, C*. (2017) Export of dissolved carbonaceous and nitrogenous substances in rivers of the “Water Tower of Asia”. Journal of Environmental Sciences.
36.Qu, B., Sillanpaa, M., Li, C*., Kang, S., Stubbins, A., Yan, F., Aho, K.S., Zhou, F. and Raymond, P.A. (2017) Aged dissolved organic carbon exported from rivers of the Tibetan Plateau. Plos One 12.
37.Qu B*, Aho KS, Li C*, Kang S, Sillanp?? M, Yan F and Raymond, P.A. Greenhouse gases emissions in rivers of the Tibetan Plateau. Scientific reports. 2017;7(1):16573.
38.Chen, P., Kang, S., Bai, J., Sillanp??, M., Li, C*., 2015. Yak dung combustion aerosols in the Tibetan Plateau: Chemical characteristics and influence on the local atmospheric environment. Atmospheric Research 156, 58-66.
39.Chen, P., Kang, S., Li, C*., Rupakheti, M., Yan, F., Li, Q., Ji, Z., Zhang, Q., Luo, W., Sillanp??, M., 2015. Characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric aerosols in the Kathmandu Valley, Nepal. Science of the Total Environment 538, 86-92.
40.Li, Y., Yan, F., Kang, S., Zhang, C., Chen, P., Hu, Z., Li, C*., 2021. Sources and light absorption characteristics of water-soluble organic carbon (WSOC) of atmospheric particles at a remote area in inner Himalayas and Tibetan Plateau. Atmospheric Research 253, 105472.
41.Zhang, C., Chen, M., Kang, S., Yan, F., Han, X., Gautam, S., Hu, Z., Zheng, H., Chen, P., Gao, S., Wang, P., Li, C*., 2021. Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau. Environmental Pollution 272, 116000.
42.Gautam, S., Yan, F., Kang, S., Han, X., Neupane, B., Chen, P., Hu, Z., Sillanp??, M., Li, C*., 2020. Black carbon in surface soil of the Himalayas and Tibetan Plateau and its contribution to total black carbon deposition at glacial region. Environmental Science and Pollution Research 27, 2670-2676.
43.Hu, Z., Kang, S*., He, X., Yan, F., Zhang, Y., Chen, P., Li, X., Gao, S., Li, C*., 2020. Carbonaceous matter in glacier at the headwaters of the Yangtze River: Concentration, sources and fractionation during the melting process. Journal of Environmental Sciences 87, 389-397.
44.Yan, F., Kang, S., Sillanp??, M., Hu, Z., Gao, S., Chen, P., Gautam, S., Reinikainen, S.-P., Li, C*., 2020. A new method for extraction of methanol-soluble brown carbon: Implications for investigation of its light absorption ability. Environmental Pollution, 114300.
45.Yan, F., Wang, P., Kang, S., Chen, P., Hu, Z., Han, X., Sillanp??, M., Li, C*., 2020. High particulate carbon deposition in Lhasa—a typical city in the Himalayan–Tibetan Plateau—due to local contributions. Chemosphere, 125843.
46.Chen, P., Li, C., Kang, S., Yan, F., Zhang, Q., Ji, Z., Tripathee, L., Rupakheti, D., Rupakheti, M., Qu, B., 2016. Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model. Atmospheric Research. 182, 46-53.



承担科研项目情况: 第二次青藏高原综合科学考察研究;中国科学院战略性先导科技专项(A类);“西部之光”人才项目等





相关话题/中国科学院 西北生态环境资源研究院