删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中山大学珠海校区土木工程学院导师教师师资介绍简介-谭学志

本站小编 Free考研考试/2021-05-15



谭学志

土木工程学院 副教授



学科方向
城市水务
水资源水生态



Email
tanxuezhi@mail.sysu.edu.cn



教育经历
2012/09-2016/09? 加拿大阿尔伯塔大学 土木与环境工程系? ?水资源工程? ? PhD
2009/09-2016/12? 武汉大学?????????? 水利水电学院? ? ?水利水电工程? ? ? ?博士
2005/09-2009/07? 西北农林科技大学?? 水利与建筑工程学院? ?水文与水资源工程? 本科
?
工作经历
2018.08至今? ? 中山大学????????? 土木工程学院?????? 副教授
2017.12—2018.08? ? 中山大学????????? 地理科学与规划学院?????? 副教授
2016/09-2017/11? 加拿大阿尔伯塔大学 土木与环境工程系???????? 博士后
?
诚挚欢迎各位硕士生、博士生和博士后加入水资源水生态团队,从事水文气象与水资源相关研究,共谋发展。
?
研究兴趣
Research Interest
(1)?? ?Hydroclimate variability and climate change: My research is to discover non-stationary characteristics of regional hydroclimate and relations to atmospheric circulation patterns, large-scale climate variability, and regional/global climate change; to develop non-stationary probability approaches for non-stationary hydro-climatic frequency analysis; to identify moisture transportation patterns and their variabilities that are responsible for regional extreme precipitation; to evaluate relative contributions of human and climate change impacts to changes in hydroclimatic extremes; to attribute changes in climate extremes to changes in thermodynamic and dynamic atmospheric conditions; and to analyze projected climate change impacts on energy consumption and production, ecosystem, human society, agriculture production, local extreme storms, and regional water availability, floods and droughts.
(2)?? ?Sustainable agricultural ecosystems: My research is to discover the processes that affect agricultural system sustainability, including water use efficiency, crop productivity, plant-soil interactions, fates of non-point sources of pollutants in agricultural land, and the potential of agricultural systems to act as source and sink for greenhouse gases (GHG). The major contribution of my research is to develop a mechanistic understanding of water and nitrogen cycling, and water and nitrogen use efficiency in diverse agricultural systems by lab field experiments, remote sensing measurements and eco-hydrological and agro-hydrological model simulations, and to identify alternative management practices that minimize non-point pollutant emissions and maximize resources use efficiency while maintaining crop yields.?
论文著作
REFEREED PUBLICATIONS (* corresponding author)
Tan X.*, Wu X., Liu B., 2021. Global changes in the spatial extents of precipitation extremes. Environmental Research Letters, doi: 10.1088/1748-9326/abf462.
Yang Y., Gan TY., Tan X., 2021. Recent changing characteristics of dry and wet spells in Canada. Climatic Change, 165:42, doi: 10.1007/s10584-021-03046-8.
Tariku T.B., Gan KE, Tan X, Gan TY, Shi H, Tilmant A, 2021. Global warming impact to River Basin of Blue Nile and the optimum operation of its multi-reservoir system for hydropower production and irrigation. Science of The Total Environment, 767, 144863
Liu B., Chen S., Tan X.*, 2021. Large‐scale synoptic atmospheric moisture circulation patterns associated with variability of daily precipitation over East China. International Journal of Climatology. doi: 10.1002/joc.7028.
Lin Q., Chen J., Li W., Huang K., Tan X., Chen H., 2021. Impacts of land use change on thermodynamic and dynamic changes of precipitation for the Yangtze River Basin, China. International Journal of Climatology.?
Liu B., Chen S., Tan X., Chen X., 2021. Response of precipitation to extensive urbanization over the Pearl River Delta metropolitan region. Environmental Earth Sciences, 80, 9??
Liu B., Liang M., Huang Z., Tan X., 2021. Duration–severity–area characteristics of drought events in eastern China determined using a three‐dimensional clustering method, International Journal of Climatology, 41,? ?
Tan, X., B. Liu, X. Tan*, 2020: Global changes in baseflow under the impacts of changing climate and vegetation. Water Resources Research, e2020WR027349. doi: 1029/2020WR027349.??
Lan, T., K. Lin, C.-Y. Xu, X. Tan, and X. Chen, 2020: Dynamics of hydrological-model parameters: mechanisms, problems and solutions. Hydrology and Earth System Sciences, 24, 1347-1366.?
Tan, X., Y. Wu, B. Liu, and S. Chen, 2020: Inconsistent changes in global precipitation seasonality in seven precipitation datasets. Climate Dynamics, 54, 3091-3108.?
Liu, B., X. Tan, T. Y. Gan, X. Chen, K. Lin, M. Lu, and Z. Liu, 2020: Global atmospheric moisture transport associated with precipitation extremes: Mechanisms and climate change impacts. Wiley Interdisciplinary Reviews: Water, 7, e1412.??
Chen, S., B. Liu, X. Tan*, and Y. Wu, 2020: Inter-comparison of spatiotemporal features of precipitation extremes within six daily precipitation products. Climate Dynamics, 54, 1057-1076.?
Yang, Y., T. Y. Gan, and X. Tan, 2020: Spatiotemporal changes of drought characteristics and their dynamic drivers in Canada. Atmospheric Research, 232, 104695.?
Wu, J., X. Tan, X. Chen, and K. Lin, 2020: Dynamic changes of the dryness/wetness characteristics in the largest river basin of South China and their possible climate driving factors. Atmospheric Research, 232, 104685.?
Chen, S., B. Liu, X. Tan, and Z. Huang, 2019: Characteristics and circulation background of extreme precipitation over East China. Natural Hazards, 99, 537-552.
Tan X., Gan T. Y.,? Horton D. E., 2018. Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems, Global Change Biology, 24, 4696-4708. doi: 10.1111/gcb.14329. (IF: 8.997, 中科院一区论文,top期刊)?
Tan X., Gan T. Y., Chen S., Horton D. E., Chen X., Liu B., Lin K., 2019. Trends in persistent seasonal-scale atmospheric circulation patterns responsible for seasonal precipitation totals and occurrences of precipitation extremes over Canada, Journal of Climate, 32, 7105-7126. doi: 10.1175/JCLI-D-18-0408.1?
Tan X.,? Gan T. Y.,? Chen Y. D., 2019. Synoptic moisture pathways associated with mean and extreme precipitation over Canada for winter and spring, Climate Dynamics, 53, 2663–2681. doi: 10.1007/s00382-019-04649-9.? ?
Tan, X., Chen S., Gan T. Y., Liu B., Chen X., 2019: Dynamic and thermodynamic changes conducive to the increased occurrence of extreme spring fire weather over western Canada under possible anthropogenic climate change. Agricultural Forest Meteorology, 265, 269-279, doi: 10.1016/j.agrformet.2018.11.026.
Chen S., Xu J., Li Q, Tan X., Nong X., 2019. A copula-based interval-bistochastic programming method for regional water allocation under uncertainty Agricultural Water Management 217, 154-164 .
Tan X.,? Gan T. Y.,? Chen S., Liu B., 2018. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections, Climate Dynamics, 52(3–4), 2105–2124. doi: 10.1007/s00382-018-4241-0.?
Tan X.,? Gan T. Y.,? Chen Y. D., 2019. Synoptic moisture pathways associated with mean and extreme precipitation over Canada for summer and fall, Climate Dynamics, 52(5-6), 2959-2979. doi: 10.1007/s00382-018-4300-6.?
Tan X., Chen S., Gan T. Y., 2018. Multi-model extreme event attribution of the weather conducive to the 2016 Fort McMurray wildfire, Agricultural and Forest Meteorology, 260–261, 109–117, doi: 10.1016/j.agrformet.2018.06.010.
Tan X., ·Shao D.,·Gu W., 2018. Effects of temperature and soil moisture on gross nitrification and denitrification rates of a Chinese lowland paddy field soil, Paddy and Water Environment, 16(4), 687-698, doi: 10.1007/s10333-018-0660-0.?
Shao D., Chen S., Tan X., Gu W., 2018. Drought characteristics over China during 1980–2015, International Journal of Climatology, 38(9), 3532-3545, doi: 10.1002/joc.5515.?
Tan X., Shao D., Gu W., 2018. Improving water reuse in paddy field districts with cascaded on-farm ponds using hydrologic model simulations, Water Resources Management, 32:1849-1865, doi: 10.1007/s11269-018-1907-7.?
Chen S., Shao D., Tan X., Gu W., Lei C., 2018. Nonstationary stochastic simulation-based water allocation method for regional water management, Journal of Water Resources Planning and Management, 145(3), doi: 10.1061/(ASCE)WR.1943-5452.**.?
Chen S., Gan T. Y,. Tan X., Shao D., Zhu J., 2019. Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China, Climate Dynamics, doi: 10.1007/s00382-018-04611-1.?
Yang Y., Gan T.Y., Tan X., 2019. Spatiotemporal changes in precipitation extremes over Canada and their teleconnections to large-scale climate patterns, Journal of Hydrometeorology, 20(2), 275–296. doi: 10.1175/JHM-D-18-0004.1.
Tan X., Gan T. Y., Shao D., 2017. Effects of persistence and large-scale climate anomalies on trends and change points in extreme precipitation of Canada, Journal of Hydrology, 550, 453–465, doi: 10.1016/j.jhydrol.2017.05.028.
Tan X., Gan T. Y., 2018. Moisture sources and pathways associated with the spatially varying seasonal extreme precipitation over Canada, Climate Dynamics, 50:629-640, doi: 10.1007/s00382-017-3630-0.?
Shao, D., Nong, X.*;?Tan, X., Chen, S., Xu, B., Hu, N., 2018. Daily Water Quality Forecast of the South-To-North Water Diversion Project of China Based on the Cuckoo Search- Back Propagation Neural Network, Water, 2018, 10(10): 1471. doi: 10.3390/w**.??
Tan X., Gan T. Y., 2017. Multifractal analysis of Canadian precipitation and streamflow, International Journal of Climatology, 37, 1221-1236, doi: 10.1002/joc.5078.?
Tan X., Gan T. Y., 2017. Non-stationary analysis of the frequency and intensity of heavy precipitation over Canada and their relations to large-scale climate patterns, Climate Dynamics, 48, 2983–3001, doi: 10.1007/s00382-016-3246-9.?
Tan X., Shao D., 2017. Precipitation trends and teleconnections identified using quantile regressions over Xinjiang, China, International Journal of Climatology, 37(3), 1510-1525, doi: 10.1002/joc.4794.
Xu B., Shao D., Tan X., Yang X., Gu W., Li H., 2017. Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields, Agricultural Water Management, 192, 149-158.
Chen S., Shao D., Tan X., Gu W., Lei C., 2017. An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition, Agricultural Water Management, 191, 98-112.
Gu W., Shao D., Tan X., Chen S., Wu Z., 2017. Simulation and optimization of multi-reservoir operation in inter-basin water transfer system, Water Resources Management, 33(11), 3401-3412, doi: 10.1007/s11269-017-1675-9.
Tan X., Gan T. Y., 2016. Wavelet analysis of precipitation extremes over Canadian ecoregions and teleconnections to large-scale climate anomalies, Journal of Geophysical Research: Atmospheres, 121 (24), 14469–14486, doi: 10.1002/2016JD025533.?
Li H., Shao D., Xu B., Chen S., Gu W., Tan X., 2016. Failure analysis of a new irrigation water allocation mode based on copula approaches in the Zhanghe Irrigation District, China, Water, 8(6), 251; doi:10.3390/w**.?
Tan X., Gan T. Y., 2015. Contribution of human and climate change impacts to changes in streamflow of Canada, Scientific Reports, 5:17767, doi: 10.1038/srep17767.?
Tan X., Gan T. Y., 2015. Nonstationary analysis of annual maximum streamflow of Canada. Journal of Climate, 28, 1788–1805.?
Tan X., Shao D., Gu W., Liu H., 2015. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agricultural Water Management, 150, 67-80.?
Tan X., Shao D., Liu H., 2014. Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D. Agricultural Water Management, 132, 69-78.
Shao D., Tan X.*, Liu H., Yang H., Chun X., Yang F., 2013. Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment. Resources, Conservation and Recycling, 75, 1-13.
Tan X., Shao D., Liu H., Yang F., et al., 2013. Effects of alternate wetting and drying irrigation on water losses and nitrogen leaching in paddy fields. Paddy and Water Environment, 11, 381-395.?
Yang F., Shao D., Xiao C., Tan X., 2012. Assessment of urban water security based on catastrophe theory. Water Science & Technology 66 (3), 487-493.
Shao D., Yang F., Xiao C., Tan X., 2012. Evaluation of water security: an integrated approach applied in Wuhan urban agglomeration, China. Water Science & Technology 66 (1), 79-87.?
刘洋, 陈菡, 谭学志*, 2020. 基于Budyko理论的韩江流域径流变化敏感性分析及归因识别. 亚热带资源与环境学报, 15(3): 9-16.
曾珂, 谭学志, 梁廖逢, 刘茹, 刘祖发, 高艺桔, 2020. 基于Copula函数的气候变化下洪水峰量联合分析. 长江科学院院报, 37(12) : 40-46.
谭学志, 邵东国, 刘欢欢, 孙春敏, 2011. 节水灌溉控制排水条件下稻田水氮平衡试验与模拟. 农业工程学报, 2011,27(11):193-198. ?Tan X., Shao D., Liu H., 2011. Modeling and experiment of water and nitrogen balance in paddy fields under water saving irrigation and controlled drainage. Transactions of the CSAE, 27(11), 193-198.
杨丰顺, 邵东国, 顾文权, 肖淳, 谭学志, 杨海东, 2012. 基于Copula函数的区域需水量随机模拟. 农业工程学报, 28(18), 193-198. Yang F., Shao D., Xiao C., Tan X., Yang H., 2012. Stochastic simulation of regional water requirement based on Copula function. Transactions of the CSAE, 28(18), 193-198.
谭学志, 粟晓玲, 邵东国, 2011. 基于SPI的陕西关中地区气象干旱时空特征分析. 干旱地区农业研究, 29(2), 224-229. Tan X., Su X., Shao D., 2011. Analysis of spatial and temporal characteristics of meteorological drought in Guanzhong Region of Shaanxi Province. Agricultural Research in the Arid Areas, 29(2), 224-229. ?????
汪奎, 邵东国, 顾文权, 岑栋浩, 谭学志, 杨丰顺, 2011. 中国用水量与经济增长的脱钩分析. 灌溉排水学报3, 34-88.
?
科研项目
(1) 国家自然科学基金委员会, 青年科学基金项目, **, 华南持续性暴雨时空演变的水汽输送驱动机制研究
(2) 广东省科学技术厅, 广东省自然科学基金面上项目, 2019A, 干湿交替稻田水氮迁移转化与高效利用机理
(3) 广州市科技创新委, 广州市科技计划项目, 7, 城市化和气候变暖下广州市暴雨IDF曲线变化预估
(4)水资源与水电工程科学国家重点实验室开放基金, Transport and transformation mechanisms and effective utilization of water and nitrogen in paddy fields
(5) 加拿大自然科学与工程研究理事会(NSERC),Regional Climate Modeling of Intensive Storms of Central Alberta under Possible Climate Change Impact
(6) 加拿大自然科学与工程研究理事会(NSERC),Canadian FloodNet Project 1-2 Examination of spatial and temporal variation of extreme events
?






相关话题/中山大学 珠海校区