删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

汕头大学工学院导师教师师资介绍简介-陈鹏

本站小编 Free考研考试/2021-05-28

职称:讲师

部门:工学院

电子邮件:dr.pengchen@foxmail.com(优先)

phd.pengchen@gmail.com

External Profile:https://drpengchen.vip.cpolar.cn/(Primary)

https://dr.pengchen.org.cn/

办公地址:机电楼301(I)


个人简介:

陈鹏,工学博士,硕士研究生导师,汕头大学卓越人才计划(优秀青年人才),汕头市高层次人才,国家自然科学基金通讯评审专家,美国电子电气工程师学会会员(IEEE Member),中国振动工程学会转子动力学分会理事。2020年博士毕业于电子科技大学,获工学博士学位,2019-2020年比利时鲁汶大学(KU Leuven)联合培养博士研究生, 2018年University of Pretoria南非科学院院士Prof. P. Stephan Heyns团队访问研究学者。主持国家自然科学基金项目、广东省基础与应用基础研究基金面上项目、广东省科技计划项目等4项。参与国家重点研发计划项目、国家自然科学基金重点项目以及国家自然科学基金面上项目等6项。在国际知名期刊以第一/通讯作者发表SCI论文20余篇,授权发明专利6项,并担任IEEE T IND INFORM、IEEE T IND ELECTRON、IEEE T INSTRUM MEAS、RELIAB ENG SYST SAFE、KNOWL-BASED SYST、J NEURAL ENG、MEASUREMENT、MEAS SCI TECHNOL等国际期刊同行评议审稿人。


主要研究方向/领域:信号及声学信息处理(多尺度时频分析,稀疏信号处理)、人工智能(深度学习,视觉计算,图像/语音超分辨)、智能交互、故障预测与健康管理以及其在高铁、风电、工业机器人、碳纤维增强复合材料、智能制造系统的关键组件中涉及智能传感及感知、故障诊断与健康状态监测等方面的应用。


工作经历

2021/03-至今 汕头大学,讲师

2016/05-2018/12 UoG-UESTC Joint School,

1)Glasgow Teaching assistant (GTA) in Dynamic Control (Spring 2016, 2017 and 2018) With Dr. Julien Le Kernec

2)GTA in Professional Practice (Spring 2018) with Associated Prof. Lei Li,

3)GTA in Control (Fall 2017 and 2018) with Associated Prof. Kelum Gamage,

4)GTA in Digital Communication (Fall 2016, 2017 and 2018) with Prof. Muhammad Imran and Dr. Sajjad Hussain

2012/09-2014/07,中裕摩托车有限公司,工程师


科研项目

[1]国家自然科学基金(青年项目),风电齿轮箱耦合信号时频特征表征增强及融合金字塔模型研究,52105111, 01/2022-12/2024(项目负责人)

[2]广东省基础与应用基础研究基金(自然科学基金面上项目),海上浮式风机关键传动件运行状态监测与故障诊断方法研究,2022A1515010859,01/2022-12/2024(项目负责人)

[3]广东省科技专项资金项目,海上风力机传动链运行状态监测与故障诊断方法研究,STKJ2021171,10/2021-09/2023(项目负责人)

[4]汕头大学科研启动项目,风电关键部件耦合信号特征表征及融合网络模型研究,NTF21029,01/2022-04/2024(项目负责人)

[5]国家重点研发计划,物理知识与运行数据驱动的重大装备异常检测与故障诊断,2018YFB1702401,2019/01-2022/12 (参与)

[6]国家自然科学基金重点项目,高速列车运行风险评估及调控基础理论与方法,61833002,2019/01-2023/12(参与)

[7]国家自然科学基金重点项目,多重不确定因素下的智能电网风险调度理论与方法研究,51537010,01/2019-12/2023(参与)

[8]国家重点研发计划,放射治疗装备可靠性与工程化技术研究,2017YFC0108400,08/2017 - 07/2019(参与)

[9]国家自然科学基金面上项目,行星齿轮传动系统故障诊断与动态可靠性评估研究,51375078,2014/01-2017/12(参与)

[10]中央高校基本业务费项目,风力发电传动行星齿轮箱载荷波动过程故障诊断技术研究,ZYGX2016J111,08/2017-12/2018(参与)


部分代表性论文

(最新发表论文见https://drpengchen.vip.cpolar.cn/research-work/)

[1]Peng Chen*, C. Xu, Z. Ma and Y. Jin, “A Mixed Samples-Driven Methodology Based on Denoising Diffusion Probabilistic Model for Identifying Damage in Carbon Fiber Composite Structures,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-11, 2023, 3513411, doi:10.1109/TIM.2023.3267522.

[2]Peng Chen*, Zhigang Ma, Chaojun Xu, Predicting Remote Wear Degradation of Machine Tool Elements in Imaging Transmission Attenuation Scenarios,IEEE Transactions on Industrial Electronics, 2023

[3]Peng Chen*, Zhigang Ma, Chaojun Xu, Pixels-Loss-Tolerant Remote Evaluation for Fault Diagnosis of Machine Tool Components Based Masked Auto-Encoders,IEEE Transactions on Industrial Informatics, 2023

[4]Zhigang Ma,Peng Chen*, Chaojun Xu, Real-ESRGAN-based image retrieval architecture for identifying surface damage on machine tool components,Computers In Industry, 2023

[5]Chaojun Xu,Peng Chen*, Zhigang Ma, A new image feature fusion strategy based on denoising diffusion probability model for defect detection in carbon fiber composite structures,Knowledge-Based Systems, 2023

[6]Peng Chen*, Chaojun Xu, Zhigang Ma, DensenetTriLoss: Densenet with triplet loss for mining hard and multi-labeled examples in mixed-type wafer defect pattern recognition, ExpertSystems with Applications, 2022

[7]Peng Chen*, Chaojun Xu, Zhigang Ma, A visual representation methodology based on densenet and grad-CAM for locating mixed-type wafer defects,IEEE Transactions on Instrumentation and Measurement, 2022

[8]Chaojun Xu,Peng Chen*, Zhigang Ma, Ruitao Pan, A deformable net architecture ensembles multi-label learning and triplet loss for mixed-type wafer damage detection,IEEE Sensor Journal, 2022

[9]Peng Chen*, Chaojun Xu, An MSPM-Densely connected nets towards diagnostics of bearings under non-stationary and non-Gaussian impulsive operating conditions,IEEE Transactions on Instrumentation and Measurement, 2022

[10]Peng Chen*, Chaojun Xu, GASFcam-DenseNets: A vibration data visualized representation methodology for rotor fault diagnosis under non-Gaussian time-varying environmental testing,Knowledge-Based Systems, 2022

[11]Peng Chen, Yu Li, K. S. Wang, M. J. Zuo, P. S. Heyns, Stephan Baggeröhr, A threshold self­setting condition monitoring scheme for wind turbine generator bearings based on deep convolutional generative adversarial networks,Measurement(2021) Volume 167, 108234.

[12]Peng Chen, Yu Li, K. S. Wang, M. J. Zuo, A novel knowledge transfer network with fluctuating operating conditions adaptation for bearing fault pattern recognition,Measurement(2020) Volume 158, 107739.

[13]Peng Chen, Yu Li, K. S. Wang, M. J. Zuo, An automatic speed adaptation neural networks model for planetary gearbox fault diagnosis under time­ varying operating conditions,Measurement(2021) Volume 171, 108784.

[14]Peng Chen, Yu Li, K. S. Wang, M. J. Zuo, Dongdong Wei, An ameliorated synchroextracting transform based on upgraded local instantaneous frequency approximation.Measurement(2019) Volume 148, 106953.

[15]Peng Chen, K. S. Wang, M. J. Zuo, Recursive mapping demodulation high order synchroextracting transform , Mechanical Systems and Signal Processing, 2021

[16]Peng Chen, K. S. Wang, M. J. Zuo, A generalized synchroextracting transform for fast and strong frequency modulated signal analysis,Condit. Monitor. Diagnost. Eng. Manage.(2018) 189–196.

[17]Peng Chen, K. S. Wang, Ke Feng, Application of order­ tracking Holospectrum to cracked rotor fault diagnostics under nonstationary conditions, in: Prognostics and System Health Management Conference (PHM­Chengdu), 2016, IEEE, pp. 1­6.


授权发明专利

[1]陈鹏,许朝峻,马志刚,张春,去噪扩散样本增量学习的碳纤维材料损伤检测方法及装置,2022,中国,ZL 202211595005.4

[2]陈鹏,王科盛,李宇,杨滨源,风机叶片光纤载荷应变特征提取及裂纹监测方法, 2019.12.31,中国,CN 108592812 B

[3]陈鹏,王科盛,一种基于二阶同步提取变换的强转速特征提取方法, 2018.08.10,中国,CN 108388839 A

[4]王科盛,李宇,陈鹏,何倩鸿,基于深度卷积对抗神经网络的旋转机械在线故障监测方法, 2018.10.12,中国,CN 108647786 B

[5]王科盛,冯珂,王况,韦冬东,陈鹏,宋理伟,基于轴心轨迹的旋转机械转速计算装置及方法, 2019.05.21,中国,CN 106126840 B

相关话题/工学