删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

南方科技大学数学系导师教师师资介绍简介-张进

本站小编 Free考研考试/2021-06-12

张进
助理教授  

zhangj9@sustech.edu.cn http://faculty.sustech.edu.cn/zhangj9/



简历
科研
教学
发表论著
教育背景
2014年,加拿大维多利亚大学,数学与统计系,获 应用数学 哲学博士学位

Ph.D Thesis:Enhanced Optimality Conditions and New Constraint Qualifications for Nonsmooth Optimization Problems
Supervisor:Professor Jane Juanjuan Ye

2010年,大连理工大学,数学科学学院,获 应用数学 理学硕士学位
2007年,大连理工大学,人文社会科学学院,获 新闻学 文学学士学位

工作经历
2019年1月至今,南方科技大学,数学系,Tenure-track 助理教授
2015年7月至2019年1月,香港浸会大学,数学系,研究助理教授
2015年4月至2015年6月,香港浸会大学,数学系,访问学者


Recruitment Notice



Post-doc: Dr. Jin Zhang from Southern University of Science and Technology would like to hire a postdoc. Ideal candidates should be familiar in optimization theory or application. Salary package is competitive and subject to research experience. If interested, please send your CV to zhangj9@sustech.edu.cn.

PhD Students: I am interested in students who are willing to work hard on challenging problems in optimization.If interested, please send mean email to request for more detailson our PhD programs.


研究领域、代表性论文
最优化理论:变分分析,非光滑分析,扰动分析
J.S. Chen, J.J. Ye, J. Zhang and J.C. Zhou,Exact formula for the second-order tangent set of the second-order cone complementarity set,SIAM Journal on Optimization29, no. 4 (2019)2986–3011.
K. Bai, J.J. Ye and J. Zhang, Directional quasi/pseudo-normality as sufficient conditions for metric subregularity,SIAM Journal on Optimization29, no. 4 (2019) 2625—2647.
L. Guo, G.H. Lin, J.J. Ye and J. Zhang, Sensitivity analysis of the value function for parametric mathematical programs with equilibrium constraints. SIAM Journal on Optimization, 24, no. 3 (2014), 1206--1237.
L. Guo, J.J. Ye and J. Zhang, Mathematical programs with geometric constraints in Banach spaces: enhanced optimality, exact penalty, and sensitivity. SIAM Journal on Optimization, 23, no. 4, (2013), 2295--2319.
J.J. Ye and J. Zhang, Enhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications. Mathematical Programming, 139, no. 1-2 (2013), 353--381.

双层规划理论、算法及在机器学习、理论经济学中应用
R.S. Liu, P. Mu, X.M. Yuan, S.Z. Zeng and J. Zhang, A generic first-order algorithmic framework for bi-Level programming beyond lower-level singleton, International Conference on Machine Learning (ICML) 2020
R.S. Liu, P. Mu, X.M. Yuan, S.Z. Zeng and J. Zhang, A Generic Descent Aggregation Framework for Gradient-based Bi-level Optimization, preprint 2021, extension of ICML2020.
J.J. Ye, X.M. Yuan, S.Z. Zeng and J. Zhang, Difference of convex algorithms for bilevel programs with applications in hyperparameter selection, preprint 2021.
R.Z. Ke, W. Yao, J.J. Ye and J. Zhang, Generic property of the partial calmness condition for bilevel programming problems, preprint 2020.


误差界条件及一阶优化算法线性收敛率分析
X.M. Yuan, S.Z. Zeng and J. Zhang,Discerning the linear convergence of ADMM for structured convex optimization through the lens of variational analysis,Journal of Machine Learning Research21,(2020)1-75.
X.F. Wang, J.J. Ye, X.M. Yuan, S.Z. Zeng and J. Zhang, Perturbation techniques for convergence analysis of proximal gradient method and other first-order algorithms via variational analysis,Set-Valued and Variational Analysis, 2020,to appear
Y.C. Liu, X.M. Yuan, S.Z. Zeng and J. Zhang, Partial error bound conditions and the linear convergence rate of ADMM, SIAM Journal on Numerical Analysis 56, no. 4 (2018) 2095—2123.
J.J. Ye, X.M. Yuan, S.Z. Zeng and J. Zhang,Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems,Set-Valued and Variational Analysis 2021,to appear
随机规划 / 鲁棒优化
L Chen, Y.C. Liu, X.M. Yang and J. Zhang, Stochastic approximation methods for the two-stage stochastic linear complementarity problem,preprint 2020.
G.H. Lin, M.J. Luo, D.L. Zhang and J. Zhang, Stochastic second-order-cone complementarity problems: expected residual minimization formulation and its applications, Mathematical Programming, 165, no.1 (2017), 197-233.

基金项目

主持: Research Grants Council of Hong Kong, "Linear convergence of the (randomized block coordinate) proximal gradient methods via variational analysis'', 2018 - 2021. 30万. (离职中止)
主持: 国家自然科学基金青年项目, "关于规模化双层规划问题的最优性与算法研究'', 2017 - 2019. 20万. (结题)

主持:国家自然科学基金面上项目, "基于变分分析的分裂算法线性收敛率研究'', 2020 - 2023. 52万 (在研)

主持:深圳市高等院校稳定支持计划 面上项目, ‘’双层规划模型研究及其在契约理论中的应用‘’, 2021-2023. 50万 (在研)

主持:深圳市优秀科技创新人才培养 优青项目, ‘’元学习和超参数学习驱动的双层规划模型与算法‘’, 2021-2023. 180万 (在研)


科研奖项

中国运筹学会 青年科技奖 (2020)

南方科技大学 理学院青年科研奖 (2020)

Courses-taught:

MATH3205: Linear and Integer Programming, Fall 2016, Hong Kong Baptist University

MATH3427: Real Analysis, Fall 2016, Hong Kong Baptist University

MATH1006: Advanced Calculus, Spring 2018, Hong Kong Baptist University

MA210:Operations Research, Spring 2019,Southern University of Science and Technology

MA433:Optimization Theory and Method, Fall 2019, Southern University of Science and Technology

MA210:Operations Research, Spring 2020,Southern University of Science and Technology


MA433:Optimization Theory and Method, Fall 2020, Southern University of Science and Technology


MA100:Calculus, Fall 2020, Southern University of Science and Technology


MA210:Operations Research, Spring 2021,Southern University of Science and Technology








Research Group:

Long-term Visitor:
Prof. 朱江醒 (2021.1 - Present) , from Yunnan University
Postdoctorate Fellows:
Dr. 尧伟(2020.3 - Present),from WuhanUniversity (B.Sc),ChineseUniversity of Hong Kong (M.Phi, Ph.D)
Ph.D Students:
尹海安(2019.9 -Present), fromSoutheast University(B.Sc), Southern University of Science and Technology(M.Phi)
冯雁飞(2020.8 -Present), fromNaikai University(B.Sc, M.Phi)
Master Students:
宋一侠(2018.9 -Present),from ZhengzhouUniversity(B.Sc)
张艺萱(2020.9 -Present), from Beijing Normal University (B.Sc)
Visiting Ph.D Students:
杨振平(2019.1 - 2019.7), from Shanghai Univeristy
曾尚志(2019.9 - 2020.3, 2020.7-Present), from the University of Hong Kong
丁彦昀(2020.6 - Present), fromBeijing University of Technology
马笑笑 (2020.8 -Present), from University of Victoria


代表著作(My co-authored works always list the authors in the alphabetical order of their names to indicate equal contributions, except the works in collaboration with mainland students due to their graduation requirements):

R.S. Liu, X. Liu, X.M. Yuan, S.Z. Zeng and J. Zhang,Bilevel Meta Optimization: A Unified Framework for Optimization-Derived Learning,preprint 2021.
R.S. Liu, Y.H. Liu, S.Z. Zeng and J. Zhang,Towards Gradient-based Bilevel Optimization with Non-convex Followers and Beyond,preprint 2021.

J. Zhang and X.D. Zhu,Linear Convergence of Stochastic First-Order Algorithms under Bounded Metric Subregularity, preprint 2021.

R.Z. Ke and J. Zhang, On the First Order Approach for Bilevel Programming: Moral Hazard Case,preprint 2021. (pdf)

Y.W. Li, G.H. Lin, J. Zhang and X.D. Zhu, A novel approach for bilevel programs based on Wolfe duality, preprint 2021.

J.J. Ye, X.M. Yuan, S.Z. Zeng and J. Zhang,Difference of convex algorithms for bilevel programs with applications in hyperparameter selection, preprint 2021. (pdf)

R.S. Liu,P. Mu, X.M. Yuan, S.Z. Zeng and J. Zhang,A generic descent aggregation framework for gradient-based bilevel optimization, preprint 2021, extension of ICML2020. (pdf)
L. Wang, H. Yin, J. Zhang,Density-based Distance Preserving Graph for Graph-based Learning,preprint 2021.
B. Mordukhovich,X.M. Yuan, S.Z. Zeng and J. Zhang,A globally convergent proximal Newton-type method in nonsmooth convex optimization,preprint 2020. (pdf)
R.Z. Ke, W. Yao, J.J. Ye and J. Zhang, Generic property of the partial calmness condition for bilevel programming problems,preprint 2020.
L Chen, Y.C. Liu, X.M. Yang and J. Zhang, Stochastic approximation methods for the two-stage stochastic linear complementarity problem,preprint 2020.
R.S. Liu, P. Mu and J. Zhang,Investigating Customization Strategies and Convergence Behaviors of Task-specific ADMM,preprint 2019.
R.S. Liu, L. Ma, X.M. Yuan, S.Z. Zeng and J. Zhang, Task-Oriented Convex BilevelOptimization with Latent Feasibility,preprint 2019.
J.J. Ye, X.M. Yuan, S.Z. Zeng and J. Zhang,Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems, Set-Valued and Variational Analysis 2021 (special issue dedicated to Tyrrell Rockafellar's 85th birthday),to appear
R.S. Liu, X. Liu, X.M. Yuan, S.Z. Zeng and J. Zhang,A Hessian-free Interior-point Method for Non-convex Bilevel Optimization,International Conference on Machine Learning (ICML) 2021, to appear

Y.C. Liu and J. Zhang,Confidence Regions of Stochastic Variational Inequalities: Error Bound Approach, Optimization,2020, to appear. (pdf)

Y.C. Liu, X.M. Yuan and J. Zhang,Discrete Approximation Scheme in Distributionally Robust Optimization, Numerical Mathematics: Theory, Methods and Applications, 2020, to appear (pdf)
X.F. Wang, J.J. Ye, X.M. Yuan, S.Z. Zeng and J. Zhang, Perturbation techniques for convergence analysis of proximal gradient method and other first-order algorithms via variational analysis,Set-Valued and Variational Analysis, 2020,to appear (pdf)

R.S. Liu,P. Mu, X.M. Yuan, S.Z. Zeng and J. Zhang,A generic first-order algorithmic framework for bi-Level programming beyond lower-level singleton,International Conference on Machine Learning (ICML) 2020, to appear (pdf, supplementary,slides)

C. Fang, X.Y. Ma, J. Zhang and X.D. Zhu, Personality information sharing in supply chain systems for innovative products in the circular economy era,International Journal of Production Research, 2020, to appear. (pdf)

X.M. Yuan, S.Z. Zeng and J. Zhang,Discerning the linear convergence of ADMM for structured convex optimization through the lens of variational analysis,Journal of Machine Learning Research 21,(2020) 1-75. (pdf)

J.S. Chen, J.J. Ye, J. Zhang and J.C. Zhou, Exact formula for the second-order tangent set of the second-order cone complementarity set, SIAM Journal on Optimization29, no. 4 (2019) 2986–3011.(pdf)

K. Bai, J.J. Ye and J. Zhang, Directional quasi/pseudo-normality as sufficient conditions for metric subregularity,SIAM Journal on Optimization 29, no. 4 (2019) 2625—2647.(pdf)
Y.C. Liu, X.M. Yuan, S.Z. Zeng and J. Zhang, Partial error bound conditions and the linear convergence rate of ADMM, SIAM Journal on Numerical Analysis 56, no. 4 (2018) 2095—2123. (pdf)
Y.C. Liu, H.F. Xu, S. Yang and J. Zhang, Distributionally robust equilibrium for continuous games: Nash and Stackelberg models, European Journal of Operational Research 265 no. 2 (2018) 631—643.(pdf)
Y.C. Liu, X.M. Yuan, S.Z. Zeng and J. Zhang, Primal-dual hybrid gradient method for distributionally robust optimization problem, Operational Research Letters 45 no. 6, (2017) 625—630.(pdf)
G.H. Lin, M.J. Luo, D.L. Zhang and J. Zhang, Stochastic second-order-cone complementarity problems: expected residual minimization formulation and its applications, Mathematical Programming, 165, no.1 (2017), 197-233. (pdf)
G.H. Lin, M.J. Luo and J. Zhang, Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints. Journal of Global Optimization 66, no. 3 (2016), 487--510.
L. Guo, G.H. Lin, J.J. Ye and J. Zhang, Sensitivity analysis of the value function for parametric mathematical programs with equilibrium constraints. SIAM Journal on Optimization, 24, no. 3 (2014), 1206--1237. (pdf)
J.J. Ye and J. Zhang, Enhanced Karush-Kuhn-Tucker conditions for mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications 163, no. 3 (2014), 777--794. (pdf)
L. Guo, J.J. Ye and J. Zhang, Mathematical programs with geometric constraints in Banach spaces: enhanced optimality, exact penalty, and sensitivity. SIAM Journal on Optimization, 23, no. 4, (2013), 2295--2319. (pdf)
J.J. Ye and J. Zhang, Enhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications. Mathematical Programming, 139, no. 1-2 (2013), 353--381. (pdf)

Publications with mainland students supervised and co-supervised

R.S. Liu, J.X. Gao, J. Zhang, D.Y. Meng and Z.C. Lin,Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond,preprint 2021.
Z.P. Yang, J. Zhang, Y.L. Wang and G.H. Lin, Variance-Based Subgradient Extragradient Method for Stochastic Variational Inequality Problems, Journal of Scientific Computing, 2020, to appear
P. Zhang, J. Zhang, G.H. Lin and X.M. Yang,Some kind of Pareto stationarity for multiobjective problems with equilibrium constraints,Optimization, (2019) doi:10.1080/**.2019.**
P. Zhang, J. Zhang, G.H. Lin and X.M. Yang,New Constraint Qualifications for S-Stationarity for MPEC with Nonsmooth Objective,Asia Pacific Journal of Operational Research, (2019),DOI: 10.1142/S02**013

X.D. Zhu, J. Zhang, J.C. Zhou and X.M. Yang, Mathematical programs with second-order cone complementarity constraints: strong stationarity and approximation method, Journal of Optimization Theory and Applications, (2019). doi.org/10.1007/s10957-018-01464-w
Z.P. Yang, J. Zhang, X.D. Zhu and G.H. Lin, SAA-based infeasible interior-point algorithms for a class of stochastic complementarity problems and their applications, Journal of Computational and Applied Mathematics, 352, (2019) 382—400
P. Zhang, J. Zhang, G.H. Lin and X.M. Yang, Constraint qualifications and proper Pareto optimality conditions for multiobjective problem with equilibrium constraints, Journal of Optimization Theory and Applications, 176 no. 3 (2018) 763—782
G.X. Wang, J. Zhang, B. Zeng and G.H. Lin, Expected residual minimization formulation for a class of stochastic linear second-order cone complementarity problems, European Journal of Operational Research 265 no. 2 (2018). 437—447
S.H. Jiang, J. Zhang, C.H. Chen and G.H. Lin, Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints, Journal of Global Optimization, (2017). DOI: 10.1007/s10898-017-0539-4
Y. Zhao, J. Zhang, X.M. Yang and G.H. Lin, Expected residual minimization formulation for a class of stochastic vector variational inequalities. Journal of Optimization Theory and Applications 175 no. 2 (2017), 545--566.




相关话题/南方科技大学 数学系

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 南方科技大学数学系导师教师师资介绍简介-付云皓
    付云皓讲师fuyh@sustc.edu.cn简历科研教学发表论著个人主页研究领域图论教育数学教育背景2015年6月,广州大学,数学学院,获应用数学博士学位2011年6月,广州大学,数学学院,获应用数学硕士学位2007年6月,北京大学,数学与信息科学学院,获数学专科学位工作经历2019年2 ...
    本站小编 Free考研考试 2021-06-12
  • 南方科技大学数学系导师教师师资介绍简介-张文龙
    张文龙访问助理教授zhangwl@sustech.edu.cnhttp://faculty.sustech.edu.cn/zhangwl/简历科研教学发表论著本科数学系,南京大学,2007年9月-2011年7月.博士研究生博士研究生,计算数学,中国科学院数学与系统科学研究院,2011年9 ...
    本站小编 Free考研考试 2021-06-12
  • 南方科技大学数学系导师教师师资介绍简介-花永霞
    花永霞讲师huayx@sustc.edu.cn简历科研教学发表论著个人主页研究领域:◆动力系统和微分方程工作经历:◆南方科技大学讲师◆哈尔滨工业大学深圳研究生院,助理教授,2010-2014学习经历:◆博士,美国西北大学,2003-2009◆硕士,南京大学,2001-2003◆学士,苏州 ...
    本站小编 Free考研考试 2021-06-12
  • 南方科技大学数学系导师教师师资介绍简介-杨燕
    杨燕讲师yangy3@sustc.edu.cn简历科研教学发表论著个人主页研究领域:◆金融工程◆资产定价理论工作经历:◆2010-2013,南华期货股份有限公司研究所,金融工程研究员学习经历:◆1994-1998,武汉大学,数学系,本科◆1998-2001,北京大学,数学系,获得理学硕士 ...
    本站小编 Free考研考试 2021-06-12
  • 南方科技大学数学系导师教师师资介绍简介-姚静
    姚静讲师yaoj@sustech.edu.cn简历科研教学发表论著个人主页研究领域:◆测量数据建模与参数估计◆数据分析◆系统性能评估工作经历:◆2008-2014国防科学技术大学讲师◆2010-2012麻省理工学院访问学者◆2014-南方科技大学数学教师学习经历:◆1997-2001国防 ...
    本站小编 Free考研考试 2021-06-12
  • 金融系招生是跟数学系一块了吗?
    提问问题:金融系招生是跟数学系一块了吗?学院:金融系提问人:ce***om时间:2018-09-1912:49提问内容:老师您好,想问一下贵校今年经济专业是不是不与哈工大一起招了?金融系的专业是按照数学系的招吗?大约招生人数是多少?谢谢回复内容:南科大独立招生,不与哈工大联培。金融系暂时没有硕博点, ...
    本站小编 南方科技大学 2019-11-22
  • 南方科技大学2020年硕士研究生招生报考通知
    一、报考条件 (一)报名申请我校推荐免试攻读硕士研究生的人员,须符合南方科技大学 2020年接收推荐免试研究生(含直博生)报名通知相关规定。 (二)报名参加全国硕士研究生招生考试的人员,须符合下列条件: 1. 中华人民共和国公民。 2. 拥护中国共产党的领导,品德良好,遵纪守法。 3. 身体健康 ...
    本站小编 免费考研网 2019-11-07
  • 南方科技大学2020年硕士招生简章和专业目录查询网址
    gs.sustc.edu.cn/shuoshi2020 ...
    本站小编 免费考研网 2019-11-07
  • 兰州大学数学系简介
      本系是国务院学位委员会首批批具有学士、硕士、博士、授予权的单位之一。现有教授11人,副教授16人,博士生导师5人。设数学与应用数学、信息与计算科学两个本科专业,有1个博士学位授予点,3个硕士学位授 ...
    兰州大学 免费考研网 2014-09-04
  • 西北大学数学系硕导介绍:王连堂
      王连堂,男,出生于1959年7月,陕西宝鸡人,现工作于西北大学数学系,教授 。  教育经历:   1982年 毕业于西北大学数学系,之后留校任教  1984-1987年 西北大学 硕士  1993 ...
    西北大学 免费考研网 2014-08-24