删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

暨南大学分子生物学教学大纲

暨南大学 /2011-11-24

中文教学大纲

◎ 英文教学大纲

◎ 教学进度与教时安排
  
 
 
※<中文教学大纲>


第一章  细胞与大分子

 

1.1 细胞的分类

1.1.1 原核细胞

1.1.2 真核细胞

1.2 亚细胞器官

1.2.1 细胞核

1.2.2 线粒体

1.2.3 叶绿体

1.2.4 内质网

1.2.5 高尔基体

1.2.6 微体

1.3 大分子

1.3.1 多糖

1.3.2 脂类

1.3.3 复合大分子

1.4 大分子的装配

1.4.1 蛋白复合体

1.4.2 核蛋白

1.4.3 质膜

1.4.4 非共价相互作用

 

第二章  蛋白质结构

 

2.1 氨基酸

2.1.1    具带电荷侧链的氨基酸

2.1.2    具极性无电荷(亲水)侧链的氨基酸

2.1.3    具无极性脂质(疏水)侧链的氨基酸

2.1.4    具芳香环结构(疏水)侧链的氨基酸

2.2 一级结构

2.3 二级结构

2.3.1    α-螺旋

2.3.2    β-折叠

2.3.3    转角

2.4 三级结构

2.5 四级结构

2.6 结构域、基序和家族

2.7 蛋白质的折叠

2.8 化学修饰与加工

 2.9 蛋白质的降解

 

 第三章  核酸与基因组

 

3.1 核苷酸

3.2 DNA的结构

3.3 RNA结构

3.4 染色质的结构

3.5 基因

3.6 无功能DNA

3.7 基因组学

 

第四章 DNA复制

 

4.1 染色体复制的一般特征

4.2 DNA复制机制

4.3 复制终止

4.4 端粒酶与端粒

4.5 DNA拓扑异构酶

4.6 滚环复制

4.7 D绳套维持线粒体复制起点

 

第五章 DNA的损伤、修复与重组

 

5.1 诱变

5.2 DNA损伤

5.3 修复系统

5.4 同源重组

 5.5 形成四分支的霍利迪结构

5.6 分支移位

 5.7 霍利迪结构的解离

 

第六章 可移动的基因元件

 

6.1 细菌的可移元件

6.2 真核生物的转座子

6.3 逆转座子

6.4 逆转录病毒

 

第七章 原核生物的RNA转录

 

7.1 RNA合成酶

7.2 转录的起始

7.3 延长加工

7.4 终止加工

 

第八章 真核生物的RNA转录

 

8.1 真核生物转录的基本特征

8.2 Pol I转录

8.3 Pol III转录

8.4 Pol II转录的基础

 

第九章 RNA加工

 

9.1 RNA加工的基本特征

9.2 核内RNA剪切

9.3 内含子II类群

9.4 rRNA加工

9.5 tRNA加工

9.6 反式剪切

9.7 选择性剪切

9.8 RNA的编辑

 

第十章 蛋白质的合成

 

10.1 基因密码

10.2 tRNA

10.3 核糖体

10.4 翻译的起始

10.5 翻译过程的延长

10.6 翻译过程的终止

 

第十一章 原核生物的基因调控

 

11.1 操纵子理论的原则

11.2 操纵子的两大类群

11.3 乳糖操纵子

11.4 Lux操纵子

11.5 阿拉伯糖操纵子

11.6 由LexA抑制剂介导的SOS基因调控

11.7 色氨酸操纵子

11.8 N蛋白的反末端调控

11.9 选择性(σ)因子的转录调控

11.10 mRNA分子寿命的调控

11.11 mRNA分子结构对翻译起始位点的调控

11.12 反义RNA的调控

11.13 二组分调控系统

 

第十二章 真核基因调控

 

12.1 上游元件(启动子近侧元件)

12.2 增强子

12.3 真核转录激活物

12.4 真核转录抑制物

12.5 沉默基因

12.6 由小分子,如脂溶性激素调控的转录

12.7 染色质结构与基因表达的调控

12.8 胞质mRNA的稳定性

12.9 由特异RNA结合位点调控的部分RNA翻译

5

※<英文教学大纲>

Chapter 1   Cells and Macromolecules

 

1.1  Cellular classification

1.1.1  Prokaryotic cells

1.1.2  Eukaryotic cell

 

1.2  Subcellular organelles

1.2.1  Nuclei

1.2.2  Mitochondria

1.2.3  Chloroplast

1.2.4  EM

1.2.5  Golgi apparatus

1.2.6  Microbodies

 

1.3   Macromolecules

1.3.1  Polysaccharides

1.3.2  Lipids

1.3.3  Complex macromolecules

 

1.4  Large macromolecular Assemblies

1.4.1  Protein complexes:

1.4.2  Nucleoprotein:

1.4.3  Membranes

1.4.4  Noncovalent interactions:

 

 

 

Chapter 2   Protein Structure

 

2.1  Amino Acids
2.1.1  Amino acids with charged side chains

2.1.2  Amino acids with polar uncharged side chains (hydrophilic)--containing groups that form hydrogen bonds with water

2.1.3  Amino acids with nonpolar aliphatic (脂肪质的) side chains (hydrophobic 疏水)

2.1.4  Amino acids with aromatic (芳香环) side chains (hydrophobic 疏水)

 

2.2  Primary structure

 

2.3  Secondary Structure

2.3.1  Model of the a helix.

2.3.2  Beta Strand and Beta Sheet

2.3.3  Turns

 

2.4  Tertiary Structure

 

2.5  Quaternary structure

 

2.6  Domains, motifs and families

2.6.1  Protein Motifs

2.6.2  Domains:

2.6.3  Protein families:

 

2.7  Folding of Proteins

 

2.8  Chemical Modifications and Processing

 

2.9  Degrading Proteins

 

 

 

Chapter 3   Nucleic Acids and Genomics

3.1  Building Blocks - Nucleotides

 

3.2  DNA Structure

3.2.1  DNA's B Form, A Form and Z Form

3.2.2  Structural Properties of   Double-Stranded DNA

3.2.3  Spectroscopic and Thermal Properties of Nucleic Acids

3.2.3.1  Denaturation and Renaturation

3.2.3.2  Hybridization

3.2.4  Invert repeats

3.2.5  Circular DNA Molecules

 

3.3  RNA Structure

3.3.1  mRNA:

3.3.2  Structure of tRNA

3.3.3  Ribosome RNA

 

3.4  Chromatin Structure

3.4.1  Histones and Nucleosomes

3.4.2  Conformation of Chromatin Fibers

 

3.5  Genes

3.5.1  one gene : one enzyme (protein) hypothesis

3.5.2  Cistron

3.5.3  Definitions for Gene

3.5.4  Gene Family

3.5.5  Duplicated Genes

 

3.6  Nonfunctional DNA

3.6.1  C-value

3.6.2  Repetitious DNA

3.6.2.1  Tandem Repeats

3.6.2.2  Interspersed Repeats

 

3.7  Genomics

3.7.1  The Genome of Hepatitis B virus

3.7.2  The HIV Genome

3.7.3  The E. coli Genome

3.7.4  The Yeast Genome

3.7.5  Human Genome Project

 

 

 

 

Chapter 4   DNA Replication

 

4.1  General Features of Chromosomal Replication

4.1.1  Semiconservative Mechanism of DNA Replication

4.1.2  Bidirectional and Unidirectional Replication

4.1.3  DNA Replication origin

4.1.3.1.  E. coli Replication Origin

4.1.3.2  Yeast Autonomously Replicating Sequences

4.1.3.3  SV40 Replication Origin :

4.1.3.4.  Three Common Features of Replication Origins :

 

4.2  The DNA Replication Machanisms
4.2.1  Replication Initiation in E. coli by DnaA Protein

4.2.2  E. coli Helicase for Melting Duplex DNA

4.2.3  Formation of RNA Primers for DNA Synthesis by E. coli Primase

4.2.4  Semidiscontinuous Replication At a Growing Fork

4.2.5  Replicationn at the Growing Fork by E. coli DNA Polymerase III

4.2.6  Eukaryotic Replication Machinery

 

4.3  Termination of Replication

 

4.4  Telomerase and Telomeres

4.4.1  Telomeres

4.4.2  Telomerase

4.4.3  Possible Roles of Telomerase in Aging and in Cancer:

4.4.3.1.  Aging:

4.4.3.2.  Cancer:

 

4.5  DNA Topoisomerases


4.6  Rolling Circle Replication

 

4.7  D loops maintain mitochondrial origins

 

 

 

Chapter 5   DNA damage, repair, and recombination

 

5.1  Mutagenesis

5.1.1  Mutation

5.1.2  Replication fidelity

 

5.2  DNA Damage

5.2.1  Mutations Occur Spontaneously

5.2.2  Mutation by UV light

5.2.3  Mutation by  chemical mutagens

 

5.3  Repair Systems

5.3.1  Direct Repair:

5.3.2  Excision Repair

 

5.4  Homologous recombination 

 

5.5  form a four-branched Holliday structure

 

5.6  Branch migration

 

5.7  Resolving Holliday junction

 

 

 

Chapter 6     Mobile Genetic Elements

 

6.1  Bacterial Mobile Elements

6.1.1  Insertion Sequences (IS elements)

6.1.2  Bacterial Transposons

 

6.2  Eukaryotic Transposons

6.2.1  Corn Ac and Ds elements

6.2.2  Drosophila P Element

 

6.3  Retrotransposons

6.3.1  Viral Retrotransposons

6.3.2  Nonviral Retrotransposons

6.3.2.1  L1 LINE Elements

6.3.2.2  SINES and Alu Sequences

 

6.4  Retroviruses

6.4.1  Genome

6.4.2  Genome Duplication:

6.4.3  Integration:

6.4.4  Virus Production

 

 

 

Chapter 7   Prokaryotic RNA Transcription

 

Definition of terms(1):

Upstream
Downstream

 

Definition of terms(2):

Transcription

cis-regulatory elements

trans-factors

Transcription Bubble

 

7.1  RNA Polymerase

 

7.2  Initiation of Transcription

 

7.3  Elongation Process

 

7.4  Termination Process

7.4.1  Rho-independent Termination Sites:

7.4.2  Rho-dependent Termination Sites:

 

 

 

Chapter 8   Eukaryotic RNA Transcription

 

8.1  Basic Features of Eukaryotic transcriton

8.1.1  Three different classes of transcription

8.1.2  Transcription Factors

 

8.2  Pol I transcription

8.2.1  Pol I

8.2.2  Promoter structure

8.2.3  Transcription factors

8.2.4  DNA recognition

8.2.5  Regulating pol I transcription

8.2.6  Transcription termination

 

8.3  Pol III Transcription

8.3.1  Genes transcribed by RNA polymerase III.

8.3.2  Types of pol III promoters

8.3.2.1  Type 1:  e.g.  Xenopus laevis 5S rRNA

8.3.2.2  Type 2: represented by tRNA genes

8.3.2.3  Type 3 genes:  e.g. U6 snRNA, 7SK RNA

8.3.3  Pol III transcription factors

8.3.3.1  TFIIIA

8.3.3.2  TFIIIC

8.3.3.3  TFIIIB

8.3.4  Transcription of type 1 and type 2 genes:

8.3.5  Transcription of type 3 genes:

8.3.6  Transcriptional termination

 

8.4  Basics of Pol II transcription

8.4.1  Pol II

8.4.2  Minimal Transcription complex

8.4.3  POLII Basal Transcription Factors

8.4.3.1  TBP

8.4.3.2  TAFIIs
8.4.3.3  TFIIA

8.4.3.4  TFIIB

8.4.3.5  TFIIF

8.4.3.6  TFIIE

8.4.3.7  TFIIH+TFIIJ

8.4.4  Transcription Elongation

8.4.5  Pol II transcription termination

 

 

 

 

 

Chapter 9   RNA Processing
9.1  Basic Features of RNA Processing

9.1.1  Major Eukaryotic Modifications events

9.1.1.1  Poly(A) on 3' end

9.1.1.2  Methylated G Cap at 5' end:

9.1.1.3  Internal Methylation:

9.1.2  Eukaryotic RNA Splicing: Introns and Exons

 

9.2  Nuclear RNA splicing

9.2.1  GU-AG rule

9.2.2  Spliceosomes

9.2.3  Splicing Reaction:

9.2.4   Role of snRNP particles in the 3 Stages(1)

Role of snRNP particles in the 3 Stages(2)

Role of snRNP particles in the 3 Stages(3)

Role of snRNP particles in the 3 Stages(4)

 

9.3  Group II Introns

 

9.4  rRNA Processing

9.4.1  Tetrahymena rRNA

9.4.2  Self-Splicing Reaction

9.4.3  Circularization of the Linear Intron:

9.4.4  Role of Intron RNA Secondary Structure

9.4.5  These Stems and Ribozyme Catalysis - Binding sites

9.4.6  L-19 RNA enzymatic activities

 

9.5  tRNA Processing

9.5.1  Processing at tRNA 5'- and 3'- ends

9.5.1.1  5' end processing

9.5.1.2  3' end processing:

9.5.1.3  About 10 percent of the bases in pre-tRNAs are modified enzymatically during processing.

9.5.2  Yeast tRNA splicing

 

9.6  Trans-Splicing

 

9.7  Alternative Splicing

 

9.8  Editing of RNA

9.8.1   RNA Editing in Mammalian Cells

9.8.2   RNA Editing in Protozoans

 

 

 

Chapter 10   Protein Synthesis

 

10.1  THE GENETIC CODE

10.2  tRNA

10.2.1  tRNA Structure:

10.2.2  tRNA Function:

10.2.3  Aminoacyl-tRNA Synthetases

10.2.4  Wobble hypothesis: codon-anticodon recognition

10.2.5  Suppressor tRNAs:

 

10.3  Ribosomes

10.3.1  Ribosome Structure:
10.3.2  Ribosome Binding Sites

 

10.4  Initiation of Translation Process

10.4.1  Prokaryotic

10.4.1.1  mRNA has two recognition sites:

10.4.1.2  fMet-tRNAf

10.4.1.3  Process

10.4.2  Eukaryotic:

 

10.5  Elongation of Translation Process

10.5.1  Prokaryotic

10.5.1.1  Loading Ribosome with AminoAcyl-tRNA molecules:

10.5.1.2  Translocation and Peptide Chain Elongation

10.5.2  Eukaryotic

 

10.6  Termination of Translation Process

10.6.1  Releasing Factors

10.6.2  Eukaryotes

 

 

 

Chapter 11   Prokaryotic Gene Regulation

 

11.1  Principles of Operon Theory

11.2  Two general Operon Classes

11.2.1  Catabolic Operons

11.2.2  Anabolic (biosynthetic) Operons

 

11.3  Lac Operon

11.3.1  Basic Features

11.3.2  Mutations in Regulation Processes

11.3.2.1  Constitutive Mutants

11.3.2.2  Noninducible Mutants

11.3.3  Mechanism of Inhibition of Transcription

11.3.4  Binding of Lac Repressor to Operator

11.3.5  Catabolite Repression: "glucose effect"

 

11.4  The Lux operon


11.5  Arabinose Operon

 

11.6  Regulation of SOS genes by the LexA repressor

 

11.7  Tryptophan (Trp) Operon .

11.7.1  Repressible system

11.7.2  Attenuation

 

11.8  Antitermination regulation by N protein

 

11.9  Transcriptional regulation by alternative (σ) factors

 

11.10  Regulation by the lifetimes of mRNA molecules

 

11.11  Regulation by mRNA stricture for the translation initiation site

 

11.12  Regulation by Antisense RNA

 

11.13  Two-Component Regulatory Systems

 

 

 

Chapter 12   Eukaryotic Gene Regulation

 

12.1  Upstream Elements( Promoter-proximal element)

12.1.1  Sites for basal transription

12.1.2  Upstream Element (promoter-proximal elements)

12.1.3  Protein Factors

 

12.2  Enhancers

 

12.3  Eukaryotic Transcription Activators

 

12.4  Eukaryotic Transcription Repressors

 

12.5  Silencers

 

12.6  Transcription Control by Small Molecules: Lipid-Soluble Hormones

12.6.1  Domain Structure of Nuclear Receptors

12.6.2  Nuclear-Receptor Response Elements

12.6.3  Mechanisms of Hormonal Control of Nuclear-Receptor Activity

 

12.7  Chromatin Structure and the Control of Gene Expression

12.7.1  Histone Acetylation and Heacetylation

12.7.2  Regulation by DNA Methylation

12.7.3  CG-rich Islands

12.7.4  The locus control region

 

12.8  Stability of Cytoplasmic mRNAs

 

12.9  Translation of Some mRNAs Is Regulated by Specific RNA-Binding Proteins
 

5

※<教学进度与教时安排>

章节 教学内容 学时 讲授学时 实践学时
 第一章
  细胞与大分子
 4学时
  4学时
 
 
 第二章
  蛋白质结构
 4学时
  4学时
 
 
 第三章
  核酸与基因组
 4学时
  4学时
 
 
 第四章
  DNA复制
  3学时
  3学时
 
 
 第五章
  DNA的损伤、修复与重组
  4学时
  4学时
  
 第六章
  可移动的基因元件
  3学时
  3学时
  
 第七章
  原核生物的RNA转录  4学时
  4学时
  
 第八章
  真核生物的RNA转录  4学时
  4学时
  
 第九章
  RNA加工  6学时
  6学时
  
 第十章
  蛋白质的合成  7学时
  7学时
  
 第十一章
  原核生物的基因调控  8学时
  8学时
  
 第十二章
  真核基因调控 
 
 

相关话题/分子生物学