中文教学大纲
◎ 英文教学大纲
◎ 教学进度与教时安排
※<中文教学大纲>
第一章 细胞与大分子
1.1 细胞的分类
1.1.1 原核细胞
1.1.2 真核细胞
1.2 亚细胞器官
1.2.1 细胞核
1.2.2 线粒体
1.2.3 叶绿体
1.2.4 内质网
1.2.5 高尔基体
1.2.6 微体
1.3 大分子
1.3.1 多糖
1.3.2 脂类
1.3.3 复合大分子
1.4 大分子的装配
1.4.1 蛋白复合体
1.4.2 核蛋白
1.4.3 质膜
1.4.4 非共价相互作用
第二章 蛋白质结构
2.1 氨基酸
2.1.1 具带电荷侧链的氨基酸
2.1.2 具极性无电荷(亲水)侧链的氨基酸
2.1.3 具无极性脂质(疏水)侧链的氨基酸
2.1.4 具芳香环结构(疏水)侧链的氨基酸
2.2 一级结构
2.3 二级结构
2.3.1 α-螺旋
2.3.2 β-折叠
2.3.3 转角
2.4 三级结构
2.5 四级结构
2.6 结构域、基序和家族
2.7 蛋白质的折叠
2.8 化学修饰与加工
2.9 蛋白质的降解
第三章 核酸与基因组
3.1 核苷酸
3.2 DNA的结构
3.3 RNA结构
3.4 染色质的结构
3.5 基因
3.6 无功能DNA
3.7 基因组学
第四章 DNA复制
4.1 染色体复制的一般特征
4.2 DNA复制机制
4.3 复制终止
4.4 端粒酶与端粒
4.5 DNA拓扑异构酶
4.6 滚环复制
4.7 D绳套维持线粒体复制起点
第五章 DNA的损伤、修复与重组
5.1 诱变
5.2 DNA损伤
5.3 修复系统
5.4 同源重组
5.5 形成四分支的霍利迪结构
5.6 分支移位
5.7 霍利迪结构的解离
第六章 可移动的基因元件
6.1 细菌的可移元件
6.2 真核生物的转座子
6.3 逆转座子
6.4 逆转录病毒
第七章 原核生物的RNA转录
7.1 RNA合成酶
7.2 转录的起始
7.3 延长加工
7.4 终止加工
第八章 真核生物的RNA转录
8.1 真核生物转录的基本特征
8.2 Pol I转录
8.3 Pol III转录
8.4 Pol II转录的基础
第九章 RNA加工
9.1 RNA加工的基本特征
9.2 核内RNA剪切
9.3 内含子II类群
9.4 rRNA加工
9.5 tRNA加工
9.6 反式剪切
9.7 选择性剪切
9.8 RNA的编辑
第十章 蛋白质的合成
10.1 基因密码
10.2 tRNA
10.3 核糖体
10.4 翻译的起始
10.5 翻译过程的延长
10.6 翻译过程的终止
第十一章 原核生物的基因调控
11.1 操纵子理论的原则
11.2 操纵子的两大类群
11.3 乳糖操纵子
11.4 Lux操纵子
11.5 阿拉伯糖操纵子
11.6 由LexA抑制剂介导的SOS基因调控
11.7 色氨酸操纵子
11.8 N蛋白的反末端调控
11.9 选择性(σ)因子的转录调控
11.10 mRNA分子寿命的调控
11.11 mRNA分子结构对翻译起始位点的调控
11.12 反义RNA的调控
11.13 二组分调控系统
第十二章 真核基因调控
12.1 上游元件(启动子近侧元件)
12.2 增强子
12.3 真核转录激活物
12.4 真核转录抑制物
12.5 沉默基因
12.6 由小分子,如脂溶性激素调控的转录
12.7 染色质结构与基因表达的调控
12.8 胞质mRNA的稳定性
12.9 由特异RNA结合位点调控的部分RNA翻译
5
※<英文教学大纲>
Chapter 1 Cells and Macromolecules
1.1 Cellular classification
1.1.1 Prokaryotic cells
1.1.2 Eukaryotic cell
1.2 Subcellular organelles
1.2.1 Nuclei
1.2.2 Mitochondria
1.2.3 Chloroplast
1.2.4 EM
1.2.5 Golgi apparatus
1.2.6 Microbodies
1.3 Macromolecules
1.3.1 Polysaccharides
1.3.2 Lipids
1.3.3 Complex macromolecules
1.4 Large macromolecular Assemblies
1.4.1 Protein complexes:
1.4.2 Nucleoprotein:
1.4.3 Membranes
1.4.4 Noncovalent interactions:
Chapter 2 Protein Structure
2.1 Amino Acids
2.1.1 Amino acids with charged side chains
2.1.2 Amino acids with polar uncharged side chains (hydrophilic)--containing groups that form hydrogen bonds with water
2.1.3 Amino acids with nonpolar aliphatic (脂肪质的) side chains (hydrophobic 疏水)
2.1.4 Amino acids with aromatic (芳香环) side chains (hydrophobic 疏水)
2.2 Primary structure
2.3 Secondary Structure
2.3.1 Model of the a helix.
2.3.2 Beta Strand and Beta Sheet
2.3.3 Turns
2.4 Tertiary Structure
2.5 Quaternary structure
2.6 Domains, motifs and families
2.6.1 Protein Motifs
2.6.2 Domains:
2.6.3 Protein families:
2.7 Folding of Proteins
2.8 Chemical Modifications and Processing
2.9 Degrading Proteins
Chapter 3 Nucleic Acids and Genomics
3.1 Building Blocks - Nucleotides
3.2 DNA Structure
3.2.1 DNA's B Form, A Form and Z Form
3.2.2 Structural Properties of Double-Stranded DNA
3.2.3 Spectroscopic and Thermal Properties of Nucleic Acids
3.2.3.1 Denaturation and Renaturation
3.2.3.2 Hybridization
3.2.4 Invert repeats
3.2.5 Circular DNA Molecules
3.3 RNA Structure
3.3.1 mRNA:
3.3.2 Structure of tRNA
3.3.3 Ribosome RNA
3.4 Chromatin Structure
3.4.1 Histones and Nucleosomes
3.4.2 Conformation of Chromatin Fibers
3.5 Genes
3.5.1 one gene : one enzyme (protein) hypothesis
3.5.2 Cistron
3.5.3 Definitions for Gene
3.5.4 Gene Family
3.5.5 Duplicated Genes
3.6 Nonfunctional DNA
3.6.1 C-value
3.6.2 Repetitious DNA
3.6.2.1 Tandem Repeats
3.6.2.2 Interspersed Repeats
3.7 Genomics
3.7.1 The Genome of Hepatitis B virus
3.7.2 The HIV Genome
3.7.3 The E. coli Genome
3.7.4 The Yeast Genome
3.7.5 Human Genome Project
Chapter 4 DNA Replication
4.1 General Features of Chromosomal Replication
4.1.1 Semiconservative Mechanism of DNA Replication
4.1.2 Bidirectional and Unidirectional Replication
4.1.3 DNA Replication origin
4.1.3.1. E. coli Replication Origin
4.1.3.2 Yeast Autonomously Replicating Sequences
4.1.3.3 SV40 Replication Origin :
4.1.3.4. Three Common Features of Replication Origins :
4.2 The DNA Replication Machanisms
4.2.1 Replication Initiation in E. coli by DnaA Protein
4.2.2 E. coli Helicase for Melting Duplex DNA
4.2.3 Formation of RNA Primers for DNA Synthesis by E. coli Primase
4.2.4 Semidiscontinuous Replication At a Growing Fork
4.2.5 Replicationn at the Growing Fork by E. coli DNA Polymerase III
4.2.6 Eukaryotic Replication Machinery
4.3 Termination of Replication
4.4 Telomerase and Telomeres
4.4.1 Telomeres
4.4.2 Telomerase
4.4.3 Possible Roles of Telomerase in Aging and in Cancer:
4.4.3.1. Aging:
4.4.3.2. Cancer:
4.5 DNA Topoisomerases
4.6 Rolling Circle Replication
4.7 D loops maintain mitochondrial origins
Chapter 5 DNA damage, repair, and recombination
5.1 Mutagenesis
5.1.1 Mutation
5.1.2 Replication fidelity
5.2 DNA Damage
5.2.1 Mutations Occur Spontaneously
5.2.2 Mutation by UV light
5.2.3 Mutation by chemical mutagens
5.3 Repair Systems
5.3.1 Direct Repair:
5.3.2 Excision Repair
5.4 Homologous recombination
5.5 form a four-branched Holliday structure
5.6 Branch migration
5.7 Resolving Holliday junction
Chapter 6 Mobile Genetic Elements
6.1 Bacterial Mobile Elements
6.1.1 Insertion Sequences (IS elements)
6.1.2 Bacterial Transposons
6.2 Eukaryotic Transposons
6.2.1 Corn Ac and Ds elements
6.2.2 Drosophila P Element
6.3 Retrotransposons
6.3.1 Viral Retrotransposons
6.3.2 Nonviral Retrotransposons
6.3.2.1 L1 LINE Elements
6.3.2.2 SINES and Alu Sequences
6.4 Retroviruses
6.4.1 Genome
6.4.2 Genome Duplication:
6.4.3 Integration:
6.4.4 Virus Production
Chapter 7 Prokaryotic RNA Transcription
Definition of terms(1):
Upstream
Downstream
Definition of terms(2):
Transcription
cis-regulatory elements
trans-factors
Transcription Bubble
7.1 RNA Polymerase
7.2 Initiation of Transcription
7.3 Elongation Process
7.4 Termination Process
7.4.1 Rho-independent Termination Sites:
7.4.2 Rho-dependent Termination Sites:
Chapter 8 Eukaryotic RNA Transcription
8.1 Basic Features of Eukaryotic transcriton
8.1.1 Three different classes of transcription
8.1.2 Transcription Factors
8.2 Pol I transcription
8.2.1 Pol I
8.2.2 Promoter structure
8.2.3 Transcription factors
8.2.4 DNA recognition
8.2.5 Regulating pol I transcription
8.2.6 Transcription termination
8.3 Pol III Transcription
8.3.1 Genes transcribed by RNA polymerase III.
8.3.2 Types of pol III promoters
8.3.2.1 Type 1: e.g. Xenopus laevis 5S rRNA
8.3.2.2 Type 2: represented by tRNA genes
8.3.2.3 Type 3 genes: e.g. U6 snRNA, 7SK RNA
8.3.3 Pol III transcription factors
8.3.3.1 TFIIIA
8.3.3.2 TFIIIC
8.3.3.3 TFIIIB
8.3.4 Transcription of type 1 and type 2 genes:
8.3.5 Transcription of type 3 genes:
8.3.6 Transcriptional termination
8.4 Basics of Pol II transcription
8.4.1 Pol II
8.4.2 Minimal Transcription complex
8.4.3 POLII Basal Transcription Factors
8.4.3.1 TBP
8.4.3.2 TAFIIs
8.4.3.3 TFIIA
8.4.3.4 TFIIB
8.4.3.5 TFIIF
8.4.3.6 TFIIE
8.4.3.7 TFIIH+TFIIJ
8.4.4 Transcription Elongation
8.4.5 Pol II transcription termination
Chapter 9 RNA Processing
9.1 Basic Features of RNA Processing
9.1.1 Major Eukaryotic Modifications events
9.1.1.1 Poly(A) on 3' end
9.1.1.2 Methylated G Cap at 5' end:
9.1.1.3 Internal Methylation:
9.1.2 Eukaryotic RNA Splicing: Introns and Exons
9.2 Nuclear RNA splicing
9.2.1 GU-AG rule
9.2.2 Spliceosomes
9.2.3 Splicing Reaction:
9.2.4 Role of snRNP particles in the 3 Stages(1)
Role of snRNP particles in the 3 Stages(2)
Role of snRNP particles in the 3 Stages(3)
Role of snRNP particles in the 3 Stages(4)
9.3 Group II Introns
9.4 rRNA Processing
9.4.1 Tetrahymena rRNA
9.4.2 Self-Splicing Reaction
9.4.3 Circularization of the Linear Intron:
9.4.4 Role of Intron RNA Secondary Structure
9.4.5 These Stems and Ribozyme Catalysis - Binding sites
9.4.6 L-19 RNA enzymatic activities
9.5 tRNA Processing
9.5.1 Processing at tRNA 5'- and 3'- ends
9.5.1.1 5' end processing
9.5.1.2 3' end processing:
9.5.1.3 About 10 percent of the bases in pre-tRNAs are modified enzymatically during processing.
9.5.2 Yeast tRNA splicing
9.6 Trans-Splicing
9.7 Alternative Splicing
9.8 Editing of RNA
9.8.1 RNA Editing in Mammalian Cells
9.8.2 RNA Editing in Protozoans
Chapter 10 Protein Synthesis
10.1 THE GENETIC CODE
10.2 tRNA
10.2.1 tRNA Structure:
10.2.2 tRNA Function:
10.2.3 Aminoacyl-tRNA Synthetases
10.2.4 Wobble hypothesis: codon-anticodon recognition
10.2.5 Suppressor tRNAs:
10.3 Ribosomes
10.3.1 Ribosome Structure:
10.3.2 Ribosome Binding Sites
10.4 Initiation of Translation Process
10.4.1 Prokaryotic
10.4.1.1 mRNA has two recognition sites:
10.4.1.2 fMet-tRNAf
10.4.1.3 Process
10.4.2 Eukaryotic:
10.5 Elongation of Translation Process
10.5.1 Prokaryotic
10.5.1.1 Loading Ribosome with AminoAcyl-tRNA molecules:
10.5.1.2 Translocation and Peptide Chain Elongation
10.5.2 Eukaryotic
10.6 Termination of Translation Process
10.6.1 Releasing Factors
10.6.2 Eukaryotes
Chapter 11 Prokaryotic Gene Regulation
11.1 Principles of Operon Theory
11.2 Two general Operon Classes
11.2.1 Catabolic Operons
11.2.2 Anabolic (biosynthetic) Operons
11.3 Lac Operon
11.3.1 Basic Features
11.3.2 Mutations in Regulation Processes
11.3.2.1 Constitutive Mutants
11.3.2.2 Noninducible Mutants
11.3.3 Mechanism of Inhibition of Transcription
11.3.4 Binding of Lac Repressor to Operator
11.3.5 Catabolite Repression: "glucose effect"
11.4 The Lux operon
11.5 Arabinose Operon
11.6 Regulation of SOS genes by the LexA repressor
11.7 Tryptophan (Trp) Operon .
11.7.1 Repressible system
11.7.2 Attenuation
11.8 Antitermination regulation by N protein
11.9 Transcriptional regulation by alternative (σ) factors
11.10 Regulation by the lifetimes of mRNA molecules
11.11 Regulation by mRNA stricture for the translation initiation site
11.12 Regulation by Antisense RNA
11.13 Two-Component Regulatory Systems
Chapter 12 Eukaryotic Gene Regulation
12.1 Upstream Elements( Promoter-proximal element)
12.1.1 Sites for basal transription
12.1.2 Upstream Element (promoter-proximal elements)
12.1.3 Protein Factors
12.2 Enhancers
12.3 Eukaryotic Transcription Activators
12.4 Eukaryotic Transcription Repressors
12.5 Silencers
12.6 Transcription Control by Small Molecules: Lipid-Soluble Hormones
12.6.1 Domain Structure of Nuclear Receptors
12.6.2 Nuclear-Receptor Response Elements
12.6.3 Mechanisms of Hormonal Control of Nuclear-Receptor Activity
12.7 Chromatin Structure and the Control of Gene Expression
12.7.1 Histone Acetylation and Heacetylation
12.7.2 Regulation by DNA Methylation
12.7.3 CG-rich Islands
12.7.4 The locus control region
12.8 Stability of Cytoplasmic mRNAs
12.9 Translation of Some mRNAs Is Regulated by Specific RNA-Binding Proteins
5
※<教学进度与教时安排>
章节 教学内容 学时 讲授学时 实践学时
第一章
细胞与大分子
4学时
4学时
第二章
蛋白质结构
4学时
4学时
第三章
核酸与基因组
4学时
4学时
第四章
DNA复制
3学时
3学时
第五章
DNA的损伤、修复与重组
4学时
4学时
第六章
可移动的基因元件
3学时
3学时
第七章
原核生物的RNA转录 4学时
4学时
第八章
真核生物的RNA转录 4学时
4学时
第九章
RNA加工 6学时
6学时
第十章
蛋白质的合成 7学时
7学时
第十一章
原核生物的基因调控 8学时
8学时
第十二章
真核基因调控