导航
个人简介
学习经历
工作经历
研究方向
主要论文
主要著作
承担课题
个人信息
姓名: 杨广仁
部门: 经济学院
直属机构:
性别: 男
--> 职务:
职称: 教授
学位: 博士
毕业院校: 上海财经大学
联系电话:
电子邮箱:
办公地址:
通讯地址:
邮编:
传真:
荣誉奖励:
联系方式
个人简介
杨广仁,博士,博士后,教授,硕士生导师,博士生导师,博士后合作导师,硕士毕业于山东大学,博士毕业于上海财经大学,博士后于美国宾夕法尼亚州立大学,工作于暨南大学经济学院统计学系,广东现场统计学会常务理事,民进暨大总支委员,广东省民进科工委委员,主要从事高维数据的统计推断,超高维数据变量筛选和大数据的理论与算法研究.主持国家社科基金1项,国家统计局重大项目1项,并以排名第一参与3项国家自然科学基金,主持广东省自然科学基金面上项目1项,主持广东省教育厅重点平台项目1项目,主持粤港合作子课题项目1项,主持暨南大学宁静致远项目2项(启明星和远航),主持横向课题2项(广州港务局和广州天河地税局).科研成果发表在《Biometrika》,《Statistica Sinica》,《Statistical Science》,《Journal of Computational and Graphical Statistics》,《Computational Statistics and Data Analysis》,《Test》,《Journal of Multivariate Analysis》,《International Statistical Review》,《Journal of Statistical Planning and Inference》,《Journal of Statistical Computation and Simulation》,《Economics Letters》,《Journal of Nonparametric Statistics》,《Communications in Statistics -- Simulation and Computation》,《Brazilian Journal of Probability and Statistics》,《Biometrical Journal》,《Random Matrices: Theory and Applications》,《Communications in Statistics --Theory and Methods》,《Statistics in Biosciences》,《Science in China》,《Acta Mathematica Sinica》,《Acta Mathematicae Applicatae Sinica》等顶级和一类国际主流权威的统计学期刊发表30多篇.并给以下杂志审稿:《Canadian Journal of Statistics》,《Journal of Nonparametric Statistics》,《Metrika》,《Journal of the American Statistical Association》,《Annals of the Institute of Statistical Mathematics》,《Journal of Statistical Computation and Simulation》,《Communications in Statistics --Theory and Methods》.作为参政议政的人员,民进广东省委会科技工委提案第一执笔人第**号《关于推进我省工业互联网应用的提案》在广东省经信委召开。本提案是省政府办公厅重点督办的3件提案之一,也是省经信委从收到290多件政协提案和人大建议中选中的唯一一件主任重点督办提案。
学习经历
工作经历
2019.01-2019.03, 香港大学统计与精算系.
2016.02-2018.02, 美国宾夕法尼亚立大学统计学系(博士后).
2016.01-2016.01, 新加坡国立大学统计与应用概率系.
2015.08-2015.08, 香港科技大学统计研究中心.
2014.12-2014.12, 香港科技大学统计研究中心.
2014.11-2014.11, 澳门大学数学系.
2014.08-2014.08, 香港科技大学统计研究中心.
2013.09-2013.11, 香港科技大学数学系.
2013.05-2013.07, 香港中文大学统计学系.
研究方向
高维数据的统计推断
超高维数据的变量筛选
半参数回归模型
主要论文
接收/发表论文(其中带有*标志的为通讯作者), 2014年1月--至今.
Yang, G., Xu, L., Xiang, S. and Yao, W. (2020) Robust Estimation and Outlier Detection for Varying Coefficient Models via Penalized Regression. Communications in Statistics - Simulation and Computation,(https://doi.org/10.1080/**.2020.**)
Yang, G.,Lin, H. and Lian, H. (2020) Minimax rate in prediction for functional principal component regression. Communications in Statistics - Theory and Methods, (https://doi.org/10.1080/**.2019.**)
Yang, G.,Wang, Q., Cui, X. and Ma, Y. (2020) Generalized Partially Linear Single Index Model with Measurement Error, Instruments and Binary Response.Brazilian Journal of Probability and Statistics, 34(4), 770-794.
Cui, X., Li, R., Yang, G.*and Zhou, W. (2020) Empirical likelihood test for large dimensional mean vector. Biometrika, 107(3), 591-607.
Wang, Q., Ma, Y. and Yang, G.*(2020) Locally efficient estimation in generalized partially linear model with measurement error in nonlinear function. Test, 29(2), 553--572.
Yu, C., Yao, W. and Yang, G.*(2020) A Selective Overview and Comparison of Robust Mixture Regression Estimators. International Statistical Review, 88(1), 176--202.
Yang, G., Yang, S. and Li, R. (2020) Feature Selection in Ultrahigh Dimensional Generalized Varying-coefficient Models. Statistica Sinica, 30(2), 1049--1067.
Xiang, S., Yao, W. and Yang, G.(2019) An Overview of Semiparametric Extensions of Finite Mixture Models. Statistical Science, 34(3), 391--404.
Yang, G., Yang, S. and Zhou, W. (2019) Adjacency Matrix Comparison for Stochastic Block Models. Random Matrices: Theory and Applications, 8, 1--8.
Wichitchan, S., Yao, W. and Yang, G.*(2019) A Simple Root Selection Method For Finite Normal Mixture Models. Communications in Statistics - Theory and Methods, 48, 3778--3794.
Yang, G.,Lin, H. and Lian, H. (2019) Double-index Dimension Reduction for Partially Functional Data. Journal of Nonparametric Statistics, 31, 761--768.
Li, D., Ling, S., Tong, H. and Yang, G.(2019) On Brownian Motion Approximation of Compound Poisson Processes with Applications to Threshold Models. Advances in Decision Sciences, 23, 1--27.
Yang, G., Liu, Y. and Pan, G. (2019). Weighted Covariance Matrix Estimation. Computational Statistics and Data Analysis, 139, 82--98.
Yang, G.and Cui, X. (2019) Trimmed Estimators for Large Dimensional Sparse Covariance Matrices. Random Matrices: Theory and Applications, 8, 1--14.
Wichitchan, S., Yao, W. and Yang, G.*(2019) Hypothesis Testing for Finite Normal Mixture Models. Computational Statistics and Data Analysis, 132, 180--189.
Yang, G.*, Zhang, L., Li, R. and Huang, Y. (2019) Feature Selection in Ultrahigh Dimensional Varying Coefficient Cox's Model. Journal of Multivariate Analysis, 171, 284--297.
Zhao, S., Zhou, J. and Yang, G.*(2019) Averaging Estimators for Discrete Choice by $M$-fold Cross-Validation. Economics Letters, 174, 65--69.
Yang, G., Xiang, S. and Yao, W. (2019) Sure Independent Screening in Ultrahigh Dimensional Generalized Additive Models. Journal of Statistical Planning and Inference, 199, 126--135.
Jing, B., Yang, G.*, Yu, X. and Zhang, C. (2018) Fused MCP with Application in Signal Processing. Journal of Computational and Graphical Statistics,27, 872--886.
Li, R., Ren, J., Yang, G.*and Yu, Y. (2018) Asymptotic Behavior of Cox's Partial Likelihood and its Application to Variable Selection. Statistica Sinica, 28, 2713--2732.
Sun, Y.*, Qi, L, Yang, G.and Peter B.Gilbert (2018) Hypothesis Tests for Stratified Mark-Specific Proportional Hazards Models with Missing Covariates with Application to HIV Vaccine Efficacy Trials. Biometrical Journal, 60, 516--536.
Yang, G.*, Hou, S., Wang, L. and Sun, Y. (2018) Feature Screening in Ultrahigh Dimensional Additive Cox Model. Journal of Statistical Computation and Simulation, 88, 1117--1133.
Yang, G., Sun, Y.*, Qi, L. and Peter B. Gilbert (2017) Estimation of Stratified Mark-Specific Proportional Hazards Models with Two-Phase Sampling of Covariates with Application to HIV Vaccine Efficacy Trials. Statistics in Bioscience, 9, 259--283.
Yang, G., Sun, Y. and Cui, X.* (2017) Automatic Structure Discoveryfor Varying-coefficient Partially Linear Models.Communications in Statistics - Theory and Methods, 46, 7703--7716.
Yang, G., Cui, X.* and Hou, S.(2017) Empirical likelihood confidence regions in the single index model with growing dimensions. Communications in Statistics - Theory and Methods, 46, 7562--7579.
Cui, X.*, Guo, J. and Yang, G.(2017) On the Identiability and Estimation of Generalized Linear Models with Parametric Nonignorable Missing Data Mechanism. Computational Statistics and Data Analysis, 107, 64-80.
Yang, G., Yu, Y., Li, R.* and Buu, A. (2016) Feature Screening in Ultrahigh Dimensional Cox's Model. Statistica Sinica, 26, 881-901.
Zhang, Y. and Yang, G.* (2015) Estimation of Partially Specified Spatial Panel Data Models with Random-Effects. Acta Mathematica Sinica, 31, 456-478.
Zhang, Y. and Yang, G.*(2015) Statistical InferenceofPartiallySpatial Autoregressive Model. Acta Mathematicae Applicatae Sinica, 31, 1-16.
Yang, G., Huang, J. and Zhou, Y.* (2014) Concave Group Methods for Variable Selection and Estimation in High-Dimensional Varying Coefficient Models. Science in China Series A: Mathematics, 57, 2073-2090.
Yang, G.and Zhou, Y.* (2014) Semiparametric Varying-coefficient Study of Mean Residual Life Models. Journal of Multivariate Analysis, 128, 226--238.
主要著作
承担课题
2019.6-2022.5,不可忽略缺失数据若干统计模型的稳健估计,广东省自然科学基金面上项目(Guangdong NSFC),项目编号:2019A(主持,在研)
2019.6-2023.5,高维删失数据的统计推断及其应用,暨南大学宁静致远远航计划,项目编号:19JNYH08(主持,在研).
2016.6-2020.6,若干超高维统计模型的联合特征筛选及其应用,国家社会科学基金一般项目(NSSFC),项目编号:16BTJ032,(主持,在研).
2015.11-2017.12,若干超高维变系数模型的联合特征筛选及其应用,国家统计局统计科学研究所(重大项目),项目编号:2015LD02,(主持).
2019.3-2019.6,珠江口港口效率评价指标体系研究,广州港通讯调度指挥中心,项目编号:**(主持,横向课题,结题).
2016.01-2017.12,若干高维删失数据统计模型的联合特征筛选,广东高校省级重点平台和重大科研项目(社科),项目编号:2016WTSCX007,(主持,结题)
2016.1-2018.12,基于大数据决策研究的饲料近红外快速检测信息平台研发,广州市产学研协同创新重大专项(粤港合作),项目编号:**(主持子课题,结题).
2015.7-2015.11,广州市天河区地方税收增长态势分析及预测,广州市天河区地方税务局,项目编号:**(主持,横向课题,结题).
2015.1-2017.12,若干超高维删失数据统计模型的联合特征筛选及其应用研究,暨南大学科研培育与创新基金-启明星计划,项目编号:15JNQM019,(主持,结题).