删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

广东工业大学材料与能源学院导师教师师资介绍简介-芮先宏

本站小编 Free考研考试/2021-05-26




芮先宏 Xianhong Rui 教授

所属学院:
材料与能源学院

导师类别:
博士生导师/硕士生导师

科研方向:
钒基储能材料与器件

联系方式:
xhrui@gdut.edu.cn

招生学院:
材料与能源学院



个人简述
广东工业大学“****”****,博士生导师,获广东省****基金、广东省珠江人才计划“青年拔尖人才”、安徽省“皖江****”****等荣誉。2007年获济南大学学士学位;2010年获中国科学技术大学硕士学位;2014年获新加坡南洋理工大学博士学位。2017年起任职于广东工业大学。专注钒基储能材料(如氧化钒、硫化钒、钒酸盐、钒基磷酸盐等)的研究与应用。在J. Am. Chem. Soc, Adv. Mater., Angew. Chem. Int. Ed., Adv. Energy Mater.等期刊上发表SCI论文110余篇,论文已被引用9000余次,h-index(引用指数):55,入选了“全球高被引****(2018、2020)”和“中国高被引****(2018、2019)”榜单。作为项目负责人,先后承担了国家自然科学基金、广东省自然科学基金、安徽省自然科学基金、留学人员科技活动择优资助项目等。



学科领域
科学学位:材料科学与工程
专业学位:材料与化工



教育背景
2007年06月 在济南大学材料科学与工程专业 获学士学位
2010年06月 在中国科学技术大学材料科学与工程专业 获硕士学位
2014年05月 在新加坡南洋理工大学材料科学与工程专业 获博士学位



工作经历
2017年09月 广东工业大学 教授



学术兼职
中国化工学会微波能化工应用专业委员会委员
钒钛联盟专业委员会委员



主要荣誉
2019年 广东省****基金获得者



主要论文

ORCID: https://orcid.org/0000-0003-1125-0905
Publons: https://publons.com/researcher/**/xianhong-rui/ (Total Times Cited: 9000+, H-index: 56)
[121] Q.F. Li, X.X. Ye, Y. Jiang, H. Ang, W.L. Liu, Y.Z. Feng, X.H. Rui(*), Y. Yu(*), Superior Potassium and Zinc Storage in K-Doped VO2(B) Spheres, Materials Chemistry Frontiers 2021, DOI: 10.1039/D0QM00990C.
[120] D. Chen(#), W.J. Yang(#), Y. Jiang, E. H. Ang, Y.Z. Feng, X.H. Rui(*), Y. Yu(*), Fast and Reversible Na Intercalation in Nsutite-Type VO2 Hierarchitectures, Advanced Materials InterfacesDOI: 10.1002/admi..
[119] Z.S. Yuan, M.J. Yao, N.N. Zhang, S. Wang, X.H. Rui, Q.C. Zhang, Z.Q. Niu(*), Mechanical Analysis of Flexible Integrated Energy Storage Devices under Bending by the Finite Element Method, SCIENCE CHINA Materials DOI: 10.1007/s40843-020-1613-4.
[118] P.C. Shi(#), S.P. Zhang(#), G.X. Lu, L.F. Wang, Y. Jiang, F.F. Liu, Y. Yao, H. Yang, M.Z. Ma, S.F. Ye, X.Y. Tao, Y.Z. Feng, X.J. Wu, X.H. Rui(*), Y. Yu(*), Red Phosphorous Derived Protective Layers with High Ionic Conductivity and Mechanical Strength on Dendrite-Free Sodium and Potassium Metal Anodes, Advanced Energy Materials2021, 11: **.
[117] X.H. Rui, X.H. Zhang, S.T. Xu, H.T. Tan, Y. Jiang, L.Y. Gan, Y.Z. Feng, C.C. Li(*), Y. Yu(*), A Low-Temperature Sodium-Ion Full Battery: Superb Kinetics and Cycling Stability, Advanced Functional MaterialsDOI: 10.1002/adfm..
[116] H.L. Chen, S.L. Cheng, D. Chen, Y. Jiang, E. H. Ang, W.L. Liu, Y.Z. Feng, X.H. Rui(*), Y. Yu(*), Vanadate-Based Electrodes for Rechargeable Batteries, Materials Chemistry Frontiers 2021, 5: 1585-1609.
[115] D. Yang, D. Chen, Y. Jiang, E. H. Ang, Y.Z. Feng, X.H. Rui(*), Y. Yu(*), Carbon-Based Materials for All-Solid-State Zinc-Air Batteries, Carbon Energy 2021, 3: 50-65.
[114] W.J. Yang, X.H. Zhang, H.T. Tan, D. Yang, Y.Z. Feng, X.H. Rui(*), Y. Yu(*), Gallium-Based Anodes for Alkali Metal Ion Batteries, Journal of Energy Chemistry 2021, 55: 557-571.
[113] X.H. Zhang, D. Chen, Y.P. Zhou(*), D. Yang, W.L. Liu, Y.Z. Feng, X.H. Rui(*), Y. Yu(*), Mesoporous Carbon Nanosheet-Assembled Flowers towards Superior Potassium Storage, Chinese Chemical Letters 2020, DOI: 10.1016/j.cclet.2020.09.025.
[112] C.S. Yan(#), C.D. Lv(#), L.G. Wang, W. Cui, L.Y. Zhang, K. N. Dinh, H.T. Tan, C. Wu, T.P. Wu, Y. Ren, J.Q. Chen, Z. Liu, M. Srinivasan, X.H. Rui(*), Q.Y. Yan(*), G.H. Yu(*), Architecting a Stable High-Energy Aqueous Al-Ion Battery, Journal of the American Chemical Society 2020, 142(36): 15295-15304.
[111] S.P. Zhang, H.T. Tan, X.H. Rui(*), Y. Yu(*), Vanadium-Based Materials: Next Generation Electrodes Powering the Battery Revolution? Accounts of Chemical Research 2020, 53(8): 1660-1671.
[110] X.H. Zhang, D. Yang, W.L. Liu, X.H. Rui(*), VOPO4·2H2O: Large-Scale Synthesis and Zinc-Ion Storage Application, Frontiers in Energy Research 2020, 8: 211.
[109] W.J. Yang(#), D. Chen(#), Y.Q. She, M.Z. Zeng, X.L. Lin, E. H.X. Ang, C.S. Yan, Y.L. Qin(*), X.H. Rui(*), Rational Design of Vanadium Chalcogenides for Sodium-Ion Batteries, Journal of Power Sources 2020, 478: 228769.
[108] X.H. Zhang, M.Z. Zeng, Y.Q. She, X.L. Lin, D. Yang, Y.L. Qin(*), X.H. Rui(*), Enhanced Low-Temperature Sodium Storage Kinetics in a NaTi2(PO4)3@C Nanocomposite, Journal of Power Sources 2020, 477: 228735.
[107] D. Yang(#), Y.P. Zhou(#), H.B. Geng(*), C.T. Liu, B. Lu, X.H. Rui(*), Q.Y. Yan(*), Pathways towards High Energy Aqueous Rechargeable Batteries, Coordination Chemistry Reviews 2020, 424: 213521.
[106] X.H. Zhang, D. Yang, W.L. Liu, Y.Z. Feng, X.H. Rui(*), Y. Yu(*), VOPO4·2H2O Nanosheet Cathode for Enhanced Sodium Storage, Frontiers in Energy Research 2020, 8: 200.
[105] P.C. Shi, F.F. Liu, Y.Z. Feng, J.F. Zhou, X.H. Rui(*), Y. Yu(*), The Synergetic Effect of Lithium Bisoxalatodifluorophosphate and Fluoroethylene Carbonate on Dendrite Suppression for Fast Charging Lithium Metal Batteries, Small2020, 16(30): **.
[104] Y.Y. Wang, B.H. Hou, X. Yang, D. Chen, H.J. Liang, Z.Y. Gu, X.H. Rui(*), X.L. Wu(*), Full Pseudocapacitive Behavior Hypoxic Graphene for Ultrafast and Ultrastable Sodium Storage, Journal of Materials Chemistry A 2020, 8(19): 9911-9918.
[103] Y. Sun(#), P.C. Shi(#), J.J. Chen(#), Q.J. Wu, X. Liang, X.H. Rui, H.F. Xiang(*), Y. Yu(*), Development and Challenge of Advanced Nonaqueous Sodium Ion Batteries, EnergyChem 2020, 2: 100031.
[102] S.P. Zhang(#), D. Yang(#), H.T. Tan, Y.Z. Feng, X.H. Rui(*), Y. Yu(*), Advances in K-Q (Q = S, Se and SexSy) batteries, Materials Today 2020, 39: 9-22.
[101] Q. Zhang(#), D.X. Li(#), J. Wang, S.J. Guo, W. Zhang, D. Chen, Q. Li, X.H. Rui, L.Y. Gan, S.M. Huang(*), Multiscale Optimization of Li-Ion Diffusion in Solid Lithium Metal Batteries via Ion Conductive Metal-Organic Frameworks, Nanoscale 2020, 12(13): 6976-6982.
[100] X.H. Zhang(#), H.L. Chen(#), W.L. Liu, N. Xiao, Q. Zhang, X.H. Rui(*), S.M. Huang(*), A Long-Cycling Aqueous Zinc-Ion Pouch Cell: NASICON-Type Material and Surface Modification, Chemistry-An Asian Journal 2020, 15(9): 1430-1435.
[99] Q.F. Li, X.H. Rui(*), D. Chen, Y.Z. Feng, N. Xiao, L.Y. Gan, Q. Zhang, Y. Yu(*), S.M. Huang(*), A High Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery, Nano-Micro Letters 2020, 12(1): 67.
[98] Y.P. Zhou, X.H. Zhang, Y.J. Liu, X.X. Xie, X.H. Rui(*), X. Zhang, Y.Z. Feng, X.J. Zhang(*), Yan Yu(*), K.M. Huang, A High-Temperature Na-Ion Battery: Boosting the Rate Capability and Cycle Life by Structure Engineering, Small 2020, 16(7): **.
[97] X.H. Zhang, X.Y. Kuang, H.W. Zhu, N. Xiao, Q. Zhang, X.H. Rui(*), Y. Yu(*), S.M. Huang(*), Hybrid Cathodes Composed of K3V2(PO4)3 and Carbon Materials with Boosted Charge Transfer for K-Ion Batteries, Surfaces 2020, 3: 1-10.
[96] C.C. Li, B. Wang, D. Chen, L.Y. Gan, Y.Z. Feng, Y.F. Zhang, Y. Yang, H.B. Geng(*), X.H. Rui(*), Y. Yu(*), Topotactic Transformation Synthesis of 2D Ultrathin GeS2 Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries, ACS Nano 2020, 14(1): 531-540.
[95] H.T. Tan, Y.Z. Feng, X.H. Rui(*), Y. Yu(*), S.M. Huang(*), Metal Chalcogenides: Paving the Way for High-Performance Sodium/Potassium-Ion Batteries, Small Methods 2020, 4: **.
[94] H.L. Chen, D. Yang, X.Y. Zhuang, D. Chen, W.L. Liu, Q. Zhang, H.H. Hng, X.H. Rui(*), Q.Y. Yan(*), S.M. Huang(*), Superior Wide-Temperature Lithium Storage in a Porous Cobalt Vanadate, Nano Research 2020, 13(7): 1867-1874.
[93] H.T. Tan(#), D. Chen(#), W.L. Liu, C.T. Liu, B. Lu, X.H. Rui(*), Q.Y. Yan(*), Free-Standing Hydrated Sodium Vanadate Papers for High-Stability Zinc-Ion Batteries, Batteries & Supercaps 2020, 3(3): 254-260.
[92] Q.F. Li, D. Chen, H.T. Tan, X.H. Zhang, X.H. Rui(*), Y. Yu(*), 3D Porous V2O5 Architectures for High-Rate Lithium Storage, Journal of Energy Chemistry 2020, 40: 15-21.
[91] B. Wang, W.C. Du, Y. Yang, Y.F. Zhang, Q. Zhang, X.H. Rui, H.B. Geng(*), C.C. Li(*), Two-Dimensional Germanium Sulfide Nanosheets as an Ultra-Stable and High Capacity Anode for Lithium Ion Batteries, Chemistry-a European 2020, 26(29): 6554-6560.
[90] S.F. Chen, Y.F. Zhang(*), H.B. Geng, Y. Yang, X.H. Rui, C.C. Li(*), Zinc Ions Pillared Vanadate Cathodes by Chemical Pre-Intercalation Towards Long Cycling Life and Low-Temperature Zinc Ion Batteries, Journal of Power Sources 2019, 441: 227192.
[89] D.S. Liu, F. Jin, A.J. Huang, X.L. Sun, H. Su, Y. Yang, Y.F. Zhang, X.H. Rui, H.B. Geng(*), C.C. Li(*), Phosphorus-Doping-Induced Surface Vacancies of 3D Na2Ti3O7 Nanowire Arrays Enabling High-Rate and Long-Life Sodium Storage, Chemistry-a European 2019, 25: 14881-14889.
[88] X.H. Zhang, D. Yang, X.H. Rui(*), Y. Yu(*), S.M. Huang(*), Advanced Cathodes for Potassium-Ion Battery, Current Opinion in Electrochemistry 2019, 18: 24-30.
[87] W.W. Han, D. Chen, Q.F. Li, W.L. Liu, H.Q. Chu(*), X.H. Rui(*), Ultrafast Flame Growth of Carbon Nanotubes for High-Rate Sodium Storage, Journal of Power Sources 2019, 439: 227072.
[86] D. Yang, C.T. Liu, X.H. Rui(*), Q.Y. Yan(*), Embracing High Performance Potassium-Ion Batteries with Phosphorus-Based Electrodes: A Review, Nanoscale 2019, 11: 15402-15417.
[85] W.C. Du, H.B. Geng, Y. Yang, Y.F. Zhang, X.H. Rui(*), C.C. Li(*), Pristine Graphene for Advanced Electrochemical Energy Applications, Journal of Power Sources 2019, 437: 226899.
[84] D. Chen(#), H.T. Tan(#), X.H. Rui(*), Q. Zhang, Y.Z. Feng, H.B. Geng, C.C. Li, S.M. Huang(*), Y. Yu(*), Oxyvanite V3O5: A New Intercalation-Type Anode for Lithium-Ion Battery, InfoMat 2019, 1: 251-259.
[83] D. Chen, X.H. Rui(*), Q. Zhang, H.B. Geng, L.Y. Gan, W. Zhang, C.C. Li, S.M. Huang(*), Y. Yu(*), Persistent Zinc-Ion Storage in Mass-Produced V2O5 Architectures, Nano Energy 2019, 60: 171-178.
[82] D. Yang, H.T. Tan, X.H. Rui(*), Y. Yu(*), Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives, Electrochemical Energy Reviews 2019, 2: 395-427.
[81] Y.Y. Wang, B.H. Hou, Q.L. Ning, W.L. Pang, X.H. Rui(*), M.K. Liu(*), X.L. Wu(*), Hierarchically Porous Nanosheets-Constructed 3D Carbon Network for Ultrahigh-Capacity Supercapacitor and Battery Anode, Nanotechnology 2019, 30: 214002.
[80] H.T. Tan, D. Chen, X.H. Rui(*), Y. Yu(*), Peering into Alloy Anodes for Sodium-Ion Batteries: Current Trends, Challenges, and Opportunities, Advanced Functional Materials 2019, 29: **.
[79] X.H. Zhang, X.H. Rui(*), D. Chen, H.T. Tan, D. Yang, S.M. Huang(*), Y. Yu(*), Na3V2(PO4)3: an Advanced Cathode for Sodium-Ion Batteries, Nanoscale 2019, 11: 2556-2576.
[78] Y.Y. Wang, H.S. Fan, B.H. Hou, X.H. Rui, Q.L Ning, Z. Cui, J.Z. Guo, Y. Yang, X.L. Wu(*), Ni1.5CoSe5 Nanocubes Embedded in 3D Dual N-doped Carbon Network as Advanced Anode Material in Sodium-Ion Full Cells with Superior Low-Temperature and High-Power Properties, Journal of Materials Chemistry A 2018, 6: 22966-22975.
[77] H.B Geng, H. Su, C.H. Lin, Y.F. Ma, Y.F. Zhang, D. Chen, H.T. Tan, X.H. Rui, Y.X. Fang, C.C. Li(*), Double-Layer N,S-Codoped Carbon Protection of MnS Nanoparticles Enabling Ultralong-Life and High-Rate Lithium Ion Storage, ACS Applied Energy Materials 2018, 1: 4867-4873.
[76] H.T. Tan, L.H. Xu, H.B. Geng, X.H. Rui(*), C.C. Li(*), S.M. Huang(*), Nanostructured Li3V2(PO4)3 Cathodes, Small 2018, 14: **.
2017 and before
[75] C.C. Li(#), X.H. Rui(#), W.F. Wei, L.B. Chen(*), Y. Yu(*), Component-Customizable Porous Rare-Earth-Based Colloidal Spheres towards Highly Effective Catalysts and Bioimaging Applications, Chemistry-a European 2017, 23(64): 16242-16248.
[74] X.H. Zhang, D. Chen, Y.P. Liu, W.W. Han, H.Q. Chu(*), X.H. Rui(*), Integrated Charge Transfer in Li3V2(PO4)3/C for High-Power Li-Ion Batteries, International Journal of Electrochemical Science 2017, 12(11): 9925-9932.
[73] X.H. Rui, W.P. Sun, C. Wu, Y. Yu(*), Q.Y. Yan(*), An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in Porous Graphene Network, Advanced Materials 2015, 27(42): 6670-6676.
[72] J.S. Wu(#), X.H. Rui(#), G.K. Long, W.Q. Chen, Q.Y. Yan(*), Q.C. Zhang(*), Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode, Angewandte Chemie International Edition 2015, 54(25): 7354-7358.
[71] X.H. Rui, X. X. Zhao, Z. Y. Lu, H. T. Tan, D. H. Sim, H. H. Hng, R. Yazami, T. M. Lim, Q. Y. Yan(*), Olivine-Type Nanosheets for Lithium Ion Battery Cathodes, ACS Nano 2013, 7(6): 5637-5646.
[70] Y.P. Zhou(#), X.H. Rui(#), W.P. Sun, Z.C. Xu, Y. Zhou, W. Jern, Q.Y. Yan(*), E. Fong(*), Biochemistry-Enabled 3D Foams for Ultrafast Battery Cathodes, ACS Nano 2015, 9 (4): 4628-4635.
[69] X.H. Rui, Y.X.Tang, O. Malyi, A. Gusak, Y.Y. Zhang, Z.Q. Niu, H.T. Tan, C. Persson, X.D. Chen, Z. Chen, Q.Y. Yan, Ambient Dissolution-Recrystallization towards Large-Scale Preparation of V2O5 Nanobelts for High-Energy Battery Applications, Nano Energy 2016, 22: 583-593.
[68] Y.Y. Zhang(#), X.H. Rui(#), Y.X. Tang(#), Y.Q. Liu, J.Q. Wei, S. Chen, W.R. Leow, W.L. Li, Y.J. Liu, J.Y. Deng, B. Ma, Q.Y. Yan(*), X.D. Chen(*), Wet-Chemical Processing of Phosphorus Composite Nanosheets for High-Rate and High-Capacity Lithium-Ion Batteries, Advanced Energy Materials 2016, 6, **.
[67] J.S. Wu(#), X.H. Rui(#), C.Y. Wang, W.B. Pei, R. Lau, Q.Y. Yan(*), Q.C. Zhang(*), Nanostructured Conjugated Ladder Polymers for Stable and Fast Lithium Storage Anodes with High-Capacity, Advanced Energy Materials 2015, 5(9): **.
[66] X.H. Rui, Z.Y. Lu, Z.Y. Yin, D.H. Sim, N. Xiao, T.M. Lim, H.H. Hng, H. Zhang(*), Q.Y. Yan(*), Oriented Molecular Attachments Through Sol-Gel Chemistry for Synthesis of Ultrathin Hydrated Vanadium Pentoxide Nanosheets and Their Applications, Small 2013, 9(5): 716-721.
[65] H.T. Tan, X.H. Rui(*), W.P. Sun, Q.Y. Yan(*), T.M. Lim(*), Vanadium-Based Nanostructure Materials for Secondary Lithium Battery Applications, Nanoscale 2015, 7: 14595-14607.
[64] X.H. Rui, H.T. Tan, Q.Y. Yan(*), Nanostructured Metal Sulfides for Energy Storage, Nanoscale 2014, 6(17): 9889-9924.
[63] X.H. Rui, Z.Y. Lu, H. Yu, D. Yang, H.H. Hng, T.M. Lim(*), Q.Y. Yan(*), Ultrathin V2O5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage, Nanoscale 2013, 5(2): 556-560.
[62] X.H. Rui, J.X. Zhu, D.H. Sim, C. Xu, Y. Zeng, H.H. Hng, T.M. Lim(*), Q.Y. Yan(*), Reduced Graphene Oxide Supported Highly Porous V2O5 Spheres as a High-Power Cathode Material for Lithium Ion Batteries, Nanoscale 2011, 3(11): 4752-4758.
[61] Y.X. Tang(#), X.H. Rui(#), Y.Y. Zhang, T.M. Lim(*), Z.L. Dong(*), H.H. Hng, X.D. Chen, Q.Y. Yan(*), Z. Chen(*), Vanadium Pentoxide Cathode Materials for High-performance Lithium-ion Batteries Enabled by a Hierarchical Nanoflower Structure via An Electrochemical Process, Journal of Materials Chemistry A 2013, 1(1): 82-88.
[60] X.H. Rui, Q.Y. Yan(*), T.M. Lim(*), M. Skyllas-Kazacos(*), Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review, Journal of Power Sources 2014, 258: 19-38.
[59] X.H. Rui, D.H. Sim, K.M. Wong, J.X. Zhu, W.L. Liu, C. Xu, H.T. Tan, N. Xiao, H.H. Hng, T.M. Lim(*), Q.Y. Yan(*), Li3V2(PO4)3 Nanocrystals Embedded in a Nanoporous Carbon Matrix Supported on Reduced Graphene Oxide Sheets: Binder-Free and High-Rate Cathode Material for Lithium-Ion Batteries, Journal of Power Sources 2012, 214: 171-177.
[58] X.H. Rui, H.T. Tan, D.H. Sim, W.L. Liu, C. Xu, H.H. Hng, R. Yazami, T.M. Lim(*), Q.Y. Yan(*), Template-Free Synthesis of Urchin-Like Co3O4 Hollow Spheres with Good Lithium Storage Properties, Journal of Power Sources 2012, 222: 97-102.
[57] X.H. Rui, Y. Jin, X.Y. Feng, L.C. Zhang, C.H. Chen(*), A Comparative Study on the Low-Temperature Performance of LiFePO4/C and Li3V2(PO4)3/C Cathodes for Lithium-Ion Batteries, Journal of Power Sources 2011, 196(4): 2109-2114.
[56] X.H. Rui, N. Yesibolati, C.H. Chen(*), Li3V2(PO4)3/C Composite as an Intercalation-Type Anode Material for Lithium-Ion Batteries, Journal of Power Sources 2011, 196(4): 2279- 2282.
[55] W.P. Sun(#), X.H. Rui(#), J.X. Zhu, L.H. Yu, Y. Zhang, Z.C. Xu, S. Madhavi(*), Q.Y. Yan(*), Ultrathin Nickel Oxide Nanosheets for Enhanced Sodium and Lithium storage, Journal of Power Sources 2015, 274: 755-761.
[54] X.H. Rui, A. Parasuraman, W.L. Liu, D.H. Sim, Q.Y. Yan, T.M. Lim(*), M. Skyllas-Kazacos, Functionalized Single-Walled Carbon Nanotubes with Enhanced Electrocatalytic Activity for Br-/Br3- Redox Couple for Vanadium Bromide Redox Flow Batteries, Carbon 2013, 64: 464-471.
[53] L.T. Yan, G. Chen, S. Sarker, S. Richins, H.Q. Wang, W.C. Xu, X.R. Rui(*), H.M. Luo(*), Ultrafine Nb2O5 Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery, ACS Applied Materials & Interfaces 2016, 8(34): 22213-22219.
[52] J. Xie(#), X.H. Rui(#), P.Y. Gu, J.S. Wu, Z.C. Xu, Q.Y. Yan(*), Q.C. Zhang(*), Novel Conjugated Ladder-Structured Oligomer Anode with High Lithium Storage and Long Cycling Capability, ACS Applied Materials & Interfaces 2016, 8(26): 16932-16938.
[51] X.H. Rui, M.O. Oo, D.H. Sim, S. Raghu, Q.Y. Yan(*), T.M. Lim(*), M. Skyllas-Kazacose(*), Graphene Oxide Nanosheets/Polymer Binders as Superior Electrocatalytic Materials for Novel Vanadium Bromide Redox Flow Batteries, Electrochimica Acta 2012, 85: 175-181.
[50] X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen(*), Analysis of the Chemical Diffusion Coefficient of Lithium Ions in Li3V2(PO4)3/C Cathode Material, Electrochimica Acta 2010, 55(7): 2384-2390.
[49] X.H. Rui, C. Li, C.H. Chen(*). Synthesis and Characterization of Carbon-Coated Li3V2(PO4)3/C Cathode Materials with Different Carbon Sources, Electrochimica Acta 2009, 54(12): 3374-3380.
[48] X.H. Rui, C. Li, J. Liu, T. Cheng, C.H. Chen(*), The Li3V2(PO4)3/C Composites with High-Rate Capability Prepared by a Maltose-Based Sol-Gel Route, Electrochimica Acta 2010, 55(22): 6761-6767.
[47] X.H. Rui, J.X. Zhu, W.L. Liu, H.T. Tan, D.H. Sim, C. Xu, H. Zhang, J. Ma, H.H. Hng, T.M. Lim(*), Q.Y. Yan(*), Facile Preparation of Hydrated Vanadium Pentoxide Nanobelts Based Bulky Paper as Flexible Binder-free Cathodes for High-performance Lithium Ion batteries, RSC Advances 2011, 1(1): 117-122.
[46] X.H. Rui, D.H. Sim, C. Xu, W.L. Liu, H.T. Tan, K.M. Wong, H.H. Hng, T.M. Lim(*), Q.Y. Yan(*), One-Pot Synthesis of Carbon-Coated VO2(B) Nanobelts for High-Rate Lithium Storage, RSC Advances 2012, 2(3): 1174-1180.
[45] D.H. Sim(#), X.H. Rui(#), J. Chen, H.T. Tan, T.M. Lim, R. Yazami, H.H. Hng(*), Q.Y. Yan(*), Direct Growth of FeVO4 Nanosheet Arrays on Stainless Steel Foil as High-Performance Binder-Free Li Ion Battery Anode, RSC Advances 2012, 2(9): 3630-3633.
[44] X.H. Rui, W.P. Sun, Q.Y. Yan(*), T.M. Lim(*), M. Skyllas-Kazacos(*), Microemulsion-Assisted Synthesis of Nanosized Li-Mn-O Spinel Cathodes for High-Rate Lithium-Ion Batteries, ChemPlusChem 2014, 79, 1794-1798.
[43] X.H. Rui, N. Yesibolati, S.R. Li, C.C. Yuan, C.H. Chen(*), Determination of the Chemical Diffusion Coefficient of Li+ in Intercalation-Type Li3V2(PO4)3 Anode Material, Solid State Ionics 2011, 187(1): 58-63.
[42] Y.P. Zhou, W.P. Sun(*), X.H. Rui, Y. Zhou, W. J. Ng, Q.Y. Yan(*), E. Fong(*), Biochemistry-Derived Porous Carbon-Encapsulated Metal Oxide Nanocrystals for Enhanced Sodium Storage, Nano Energy 2016, 21: 71-79.
[41] W.P. Sun, X.H. Rui, D. Yang, Z.Q. Sun, B. Li, W.Y. Zhang, Y. Zong, S Madhavi(*), S.X. Dou(*),Q.Y. Yan(*), Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage, ACS Nano 2015, 9(11):11371-11381.
[40] Y.X Tang, Y.Y. Zhang, X.H. Rui, D.P. Qi, Y.F. Luo, W.R. Leow, S. Chen, J. Guo, J.Q. Wei, W.L. Li , J.Y. Deng, Y.K. Lai, B. Ma, X.D. Chen(*), Conductive Inks Based on a Lithium Titanate Nanotube Gel for High-Rate Lithium-Ion Batteries with Customized Configuration, Advanced Materials 2016, 28(8): 1567-1576.
[39] W.P. Sun, X.H. Rui, D. Zhang, Y.Z. Jiang, Z.Q. Sun, H.K. Liu, S.X. Dou(*), Bismuth Sulfide: A High-Capacity Anode for Sodium-Ion Batteries, Journal of Power Sources 2016, 309: 135-140.
[38] W.P. Sun, X.H. Rui, M. Ulaganathan, S. Madhavia(*), Q.Y. Yan(*), Few-Layered Ni(OH)2 Nanosheets for High-Performance Supercapacitors, Journal of Power Sources 2015, 295: 323-328.
[37] L.T. Yan, X.H. Rui, G. Chen, W.C. Xu, G.F. Zou(*), H.M. Luo(*), Recent Advances in Nanostructured Nb-based Oxides for Electrochemical Energy Storage, Nanoscale 2016, 8, 8443-8465.
[36] R.B. Wu(#), D.P. Wang(#), X.H. Rui, B. Liu, K. Zhou(*), A.W.K. Law, Q.Y. Yan, J. Wei, Z Chen(*), In-Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for High-Performance Lithium-Ion Batteries, Advanced Materials 2015, 27(19): 3038-3044.
[35] X.H. Cao, B. Zheng, W. H. Shi, J. Yang, Z. X. Fan, Z. M. Luo, X. H. Rui, B. Chen, Q. Y. Yan, H. Zhang(*), Reduced Graphene Oxide-Wrapped MoO3 Composites Prepared by Using Metal-Organic Frameworks as Precursor for All-Solid-State Flexible Supercapacitors, Advanced Materials 2015, 27(32): 4695-4701.
[34] C.L. Tan(#), Z.Y. Zeng(#), X. Huang(#), X.H. Rui, X.J. Wu, B. Li, Z.M. Luo, J.Z. Chen, B. Chen, Q.Y. Yan, H. Zhang(*), Liquid-Phase Epitaxial Growth of Two-Dimensional Semiconductor Hetero-nanostructures, Angewandte Chemie 2015, 127(25): 7462-7466.
[33] Y. Zhang, W.P. Sun, X.H. Rui, B. Li, H.T. Tan, G.L. Guo, S. Madhavi, Y. Zong, Q.Y. Yan(*), One-Pot Synthesis of Tunable Crystalline Ni3S4@Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors, Small 2015, 11(30): 3694-3702.
[32] C.C. Sun, J. Yang, X.H. Rui, W.N. Zhang, Q.Y. Yan, P. Chen, F.W. Huo(*), W. Huang(*), X.C. Dong(*), MOF-Directed Templating Synthesis of a Porous Multicomponent Dodecahedron with Hollow Interiors for Enhanced Lithium-Ion Battery Anodes, Journal of Materials Chemistry A 2015, 3:8483-8488.
[31] H.T. Tan, X.H. Rui, H. Yu, W.L. Liu, C. Xu, Z.C. Xu, H.H. Hng, Q.Y. Yan(*), An Aqueous-Based Chemical Route towards Ambient-Preparation of Multi-components Core-Shell Nanotubes, ACS Nano 2014, 8(8): 4004-4014.
[30] X. Huang(*), X.H. Rui, H.H. Hng(*), Q.Y. Yan(*), Vanadium Pentoxide-based Cathode Materials for Lithium-Ion Batteries: Morphology control, Carbon Hybridization and Cation Doping, Particle and Particle Systems Characterization 2015, 32(3): 276-294.
[29] W.L. Liu, X.H. Rui, H.T. Tan, C. Xu, Q.Y. Yan, H.H. Hng(*), Solvothermal Synthesis of Pyrite FeS2 Nanocubes and Their Superior High Rate Lithium Storage Properties, RSC Advances 2014, 4(90): 48770- 48776.
[28] H.T. Tan, X.H. Rui, Z.Y. Lu, C. Xu, W.L. Liu, H.H. Hng, Q.Y. Yan(*), Integrated Charge Transfer in Colloidal Cu-MnO Heterostructures for High-Performance Lithium Ion Batteries, Journal of Physical Chemistry C 2014, 118(31): 17452-17460.
[27] X.X. Zhao, X.H. Rui, W.W. Zhou, L.P. Tan, Q.Y. Yan, Z.Y. Lu(*), H.H. Hng(*), Growth of Si Nanowires in Porous Carbon with Enhanced Cycling Stability for Li-Ion Storage, Journal of Power Sources 2014, 250: 160-165.
[26] H. Yu, X.H. Rui, H. Tan, J. Chen, X. Huang, C. Xu, W.L. Liu, D. Y. W. Yu, H. E. Hoster, Q.Y. Yan(*), Cu Doped V2O5 Flowers as Cathode Material for High-Performance Lithium Ion Batteries, Nanoscale 2013, 5(11): 4937-4943.
[25] H.T. Tan, X.H. Rui, W.H. Shi, C. Xu, H. Yu, H. E. Hoster, Q.Y. Yan(*), Controlled Synthesis of Nanostructured Manganese Oxyhydroxide Nanotubes: Implication for High-Power High-Energy Supercapaitor, ChemPlusChem 2013, 78(6): 554-560.
[24] Z.Y. Lu, X.H. Rui, H.T. Tan, W.Y. Zhang, H. H. Hng(*), Q.Y. Yan(*), Synthesis of Single-Crystalline LiMn2O4 and LiMn1.5Ni0.5O4 Nanocrystals and Their Li Storage Properties, ChemPlusChem 2013, 78(3): 218-221.
[23] W.H. Shi, X.H. Rui, J.X. Zhu, Q.Y. Yan(*), Design of Nanostructured Hybrid Materials Based on Carbon and Metal Oxides for Li Ion Batteries, Journal of Physical Chemistry C 2012, 116(51): 26685-26693.
[22] H. Yu(#), C. Guan(#), X.H. Rui, B. Ouyang, B. Yadian, Y.Z. Huang, H. Zhang, H.E. Hoster, H.J. Fan(*), Q.Y. Yan(*), Hierarchically Porous Three-dimensional Electrodes of CoMoO4 and ZnCo2O4 and Their High Anode Performance for Lithium Ion Batteries, Nanoscale 2014, 6(18): 10556-10561.
[21] D. Yang, Z.Y. Lu, X.H. Rui, X. Huang, H. Li, J.X. Zhu, W.Y. Zhang, Y.M. Lam, H.H. Hng, H. Zhang(*), Q.Y. Yan(*), Synthesis of Two-Dimensional Transition Metal Phosphates with Highly Ordered Mesoporous Structures for Lithium-Ion Battery Application, Angewandte Chemie International Edition 2014, 53(35): 9352-9355.
[20] R.B. Wu(#), X.K. Qian(#), X.H. Rui, H. Liu, B. Yadian, K. Zhou(*), J. Wei, Q.Y. Yan, X.Q. Feng, Y. Long(*), L.Y. Wang, Y.Z. Huang(*), Zeolitic Imidazolate Framework 67-Derived High Symmetric Porous Co3O4 Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability, Small 2014, 10(10): 1932-1938.
[19] X.H. Cao(#), B. Zheng(#), X.H. Rui, W.H. Shi, Q.Y. Yan, H. Zhang(*), Metal Oxide-Coated Three-Dimensional Graphene Prepared by the Use of Metal-Organic Frameworks as Precursors, Angewandte Chemie International Edition 2014, 53(5): 1404-1409.
[18] C. Xu, Y. Zeng, X.H. Rui, J.X. Zhu, H.T. Tan, A. Guerrero, J. Toribio, J. Bisquert, G. Garcia-Belmonte(*), Q.Y. Yan(*), Amorphous Iron Oxyhydroxide Nanosheets: Synthesis, Li Storage and Conversion Reaction Kinetics, Journal of Physical Chemistry C 2013, 117(34): 17462-17469.
[17] D. Yang(#), Y.P. Zhou(#), X.H. Rui, J.X. Zhu, Z.Y. Lu , E. Fong(*), Q.Y. Yan(*), Fe3O4 Nanoparticle Chains with N-doped Carbon Coating: Magnetotactic Bacteria Assisted Synthesis and High-Rate Lithium Storage, RSC Advances 2013, 3(35): 14960-14962.
[16] J.X. Zhu(#), D. Yang(#), X.H. Rui, D.H. Sim, H. Yu, H. E. Hoster, P. M. Ajayan, Q.Y. Yan(*), Facile Preparation of Ordered Porous Graphene-Metal Oxide@C Binder-Free Electrodes with High Li Storage Performance, Small 2013, 9(20): 3390-3397.
[15] D. Yang, J.X. Zhu, X.H. Rui, H.T. Tan, R. Cai, H. E. Hoster, D. Y. W. Yu, H. H. Hng, Q.Y. Yan(*), Synthesis of Cobalt Phosphides and Their Application as Anodes for Lithium Ion Batteries, ACS Applied Materials & Interfaces 2013, 5(3): 1093-1099.
[14] Y.P. Du, Z.Y. Yin, X.H. Rui, Z.Y. Zeng, X.J. Wu, J.Q. Liu, Y.Y. Zhu, J.X. Zhu, X. Huang, Q.Y. Yan, H. Zhang(*), Facile, Relative Green, Inexpensive Synthetic Approach Toward Large-Scale SnS2 Nanoplates for High-Performance Lithium-Ion Batteries, Nanoscale 2013, 5(4): 1456-1459.
[13] W.H. Shi, J.X. Zhu, X.H. Rui, X.H. Cao, C. Chen, H. Zhang, H.H. Hng, Q.Y. Yan(*), Controlled Synthesis of Carbon Coated Cobalt Sulfide Nanostructures in Oil Phase and Their Li Storage Performances, ACS Applied Materials & Interfaces 2012, 4(6): 2999-3006.
[12] C. Xu, Y. Zeng, X.H. Rui, N. Xiao, J.X. Zhu, W.Y. Zhang, J. Chen, H.T. Tan, H.H. Hng, Q.Y. Yan(*), Controlled Soft-Template Synthesis of Ultra-thin C@FeS Nanosheets with High Li Storage Performance, ACS Nano 2012, 6(6): 4713-4721.
[11] S.F. Fan, T. Sun, X.H. Rui, N. Xiao, Q.Y. Yan, H.H. Hng(*), Cooperative Enhancement of Capacities in Nanostructured Bulk SnSb-CNT Network Nanocomposite as Anode for Lithium Ion Batteries, Journal of Power Sources 2012, 201: 288-293.
[10] C.M. Zhang, J.X. Zhu, X.H. Rui, J. Chen, D.H. Sim, W.H. Shi, H.H. Hng, T.M. Lim(*), Q.Y. Yan(*), Synthesis of Hexagonal-symmetry α-Iron Oxyhydroxide Crystals Using Reduced Graphene Oxide as Surfactants and Their Li Storage Properties, CrystEngComm 2011, 14(1): 147-153.
[9] Y. Jin, C.P. Yang, X.H. Rui, T. Cheng, C.H. Chen(*), V2O3 Modified LiFePO4/C Composite with Improved Electrochemical Performance, Journal of Power Sources 2011, 196(13): 5623-5630.
[8] X.H. Cao, Y.M. Shi, W.H. Shi, X.H. Rui, J. Kong, Q.Y. Yan, H. Zhang(*), Preparation of MoS2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries, Small 2013, 9(20), 3433-3438.
[7] J.X. Zhu, W.H. Shi, N. Xiao, X.H. Rui, H.T. Tan, X.H. Lu, H.H. Hng, J. Ma, Q.Y. Yan(*), Oxidation-Etching Preparation of MnO2 Tubular Nanostructures for High-Performance Supercapacitors, ACS Applied Materials & Interfaces 2012, 4(5): 2769-2774.
[6] C.M. Zhang, J. Chen, Y. Zeng, X.H. Rui, J.X. Zhu, W.Y. Zhang, C. Xu, T.M. Lim, H.H. Hng, Q.Y. Yan(*), A Facile Approach Toward Transition Metal Oxide Hierarchical Structures and Their Lithium Storage Properties, Nanoscale 2012, 4(12): 3718-3724.
[5] N. Xiao, H.T. Tan, J.X. Zhu, L.P. Tan, X.H. Rui, X.C. Dong, Q.Y. Yan(*), High-Performance Supercapacitor Electrodes Based on Graphene Achieved by Thermal Treatment with the Aid of Nitric Acid, ACS Applied Materials & Interfaces 2013, 5(19): 9656-9662.
[4] S.F. Fan, L.Y. Lim, Y.Y. Tay, S.S. Pramana, X.H. Rui, M.K. Samani, Q.Y. Yan, B.K. Tay, M.F. Toneyc, H.H. Hng(*), Rapid Fabrication of a Novel Sn-Ge Alloy: Structure-Property Relationship and its Enhanced Lithium Storage Properties, Journal of Materials Chemistry A 2013, 1(46): 14577-14585.
[3] L.P. Tan, Z.Y. Lu, H.T. Tan, J.X. Zhu, X.H. Rui, Q.Y. Yan, H.H. Hng(*), Germanium Nanowires-based Carbon Composite as Anodes for Lithium-ion Batteries, Journal of Power Sources 2012, 206: 253-258.
[2] G.L. Guo, T.H.A. Truong, H.T. Tan, H.X. Ang, W.Y. Zhang, C. Xu, X.H. Rui, Z.L. Hu, E. Fong(*), Q.Y. Yan(*), Platinum and Palladium Nanotubes Based on Genetically Engineered Elastin-Mimetic Fusion Protein Fiber Templates: Synthesis and Application for Lithium-O2 Battery, Chemistry-An Asian Journal 2014, 9(9): 2555-2559.
[1] H.T. Tan, Y.T. Chen, C.M. Zhou, X.L. Jia, J.X. Zhu, J. Chen, X.H. Rui, Q.Y. Yan(*), Y.H. Yang(*), Palladium Nanoparticles Supported on Manganese Oxide-CNT Composites for Solvent-Free Aerobic Oxidation of Alcohols: Tuning the Properties of Pd Active Sites Using MnOx, Applied Catalysis B: Environmental 2012, 119-120: 166-174.











相关话题/广东工业大学 材料

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 广东工业大学材料与能源学院导师教师师资介绍简介-黄金
    黄金HUANGJIN教授所属学院:材料与能源学院导师类别:博士生导师、硕士生导师科研方向:太阳能利用技术,新型能源材料及储能技术联系方式:huangjiner@126.com博士招生学院:材料与能源学院硕士招生学院:材料与能源学院个人简述黄金,博士,教授,材料与能源学院副院长,广东省相变储能及高效节 ...
    本站小编 Free考研考试 2021-05-26
  • 广东工业大学物理与光电工程学院导师教师师资介绍简介-胡义华
    胡义华HUYIHUA教授所属学院:物理与光电工程学院导师类别:博士生导师、硕士生导师职务:物理与光电工程学院执行院长科研方向:无机发光材料博士招生学院:物理与光电工程学院硕士招生学院:物理与光电工程学院个人简述(限300字)胡义华教授,理学博士,广东工业大学博士生导师(兼任中科院安徽光学精密机械研究 ...
    本站小编 Free考研考试 2021-05-26
  • 广东工业大学材料与能源学院导师教师师资介绍简介-鲁圣国
    鲁圣国LuSheng-Guo教授所属学院:材料与能源学院导师类别:博士生导师/硕士生导师科研方向:能量存储和转化材料,多层陶瓷电容器、柔性传感器和固态制冷器件联系方式:sglu@gdut.edu.cn招生学院:材料与能源学院个人简述华中科技大学本科、硕士,西安交通大学博士。“****”****。广东 ...
    本站小编 Free考研考试 2021-05-26
  • 广东工业大学物理与光电工程学院导师教师师资介绍简介-何苗
    何苗教授HEMIAO所属学院:物理与光电台工程学院导师类别:博士生导师,硕士生导师科研方向:新能源电池材料与器件,紫外LED封装技术,光电子材料联系方式:Email:herofate@126.comHP:**硕士招生学院:物理与光电工程学院个人简述(限300字)何苗老师1987毕业于吉林大学物理系, ...
    本站小编 Free考研考试 2021-05-26
  • 广东工业大学物理与光电工程学院导师教师师资介绍简介-董华锋
    董华锋DongHuafeng所属学院:物理与光电台工程学院导师类别:博士生导师、硕士生导师科研方向:从原子与电子层次出发开展新材料预测、设计,包括新能源材料,二维柔性电子材料,多铁材料,超硬材料,高压高温极端条件下的材料及装备,TDDFT研究飞秒尺度下的物理、化学反应过程联系方式:**邮箱hfdon ...
    本站小编 Free考研考试 2021-05-26
  • 广东工业大学物理与光电工程学院导师教师师资介绍简介-董华锋
    董华锋DongHuafeng所属学院:物理与光电工程学院导师类别:博士生导师、硕士生导师职务:科研方向:基于第一性原理的新材料预测,包括新能源材料,二维柔性电子材料,多铁材料,超硬材料,高压高温极端条件下材料的结构及物性联系方式:Email:hfdong@gdut.edu.cn;Tel:**硕士招生 ...
    本站小编 Free考研考试 2021-05-26
  • 广东工业大学物理与光电工程学院导师教师师资介绍简介-唐新桂
    唐新桂TANGXINGUI研究员所属学院:物理与光电工程学院导师类别:博士生导师、硕士生导师科研方向:微纳电子材料与器件物理、半导体薄膜技术、多铁性薄膜与器件。博士招生学院:材料与能源学院、物理与光电工程学院硕士招生学院:材料与能源学院、物理与光电工程学院个人简述(限300字)唐新桂,男,博士,研究 ...
    本站小编 Free考研考试 2021-05-26
  • 广东工业大学信息工程学院导师教师师资介绍简介-秦玉文教授
    秦玉文QINYUWEN教授所属学院:信息工程学院导师类别:硕导、博导科研方向:光纤通信、光纤传感联系方式:qinyw@gdut.edu.cn博士招生学院:信息工程学院硕士招生学院:信息工程学院、物理与光电工程学院个人简述:1960年生于河南灵宝,1996年博士毕业于天津大学,先后在北京交通大学和弗吉 ...
    本站小编 Free考研考试 2021-05-26
  • 广东工业大学物理与光电工程学院导师教师师资介绍简介-简基康
    简基康JIANJIKANG教授所属学院:物理与光电工程学院导师类别:博士生导师、硕士生导师科研方向:半导体单晶和纳米材料生长、物性及器件构造博士招生学院:物理与光电工程学院硕士招生学院:物理与光电工程学院个人简述(限300字)简基康教授,二级教授,理学博士,广东工业大学“****”****,广东工业 ...
    本站小编 Free考研考试 2021-05-26
  • 广东工业大学信息工程学院导师教师师资介绍简介-王云才教授
    王云才WANGYUNCAI教授姓名:王云才职称:教授所属学院:信息工程学院导师类别:硕导、博导科研方向:保密通信器件与技术联系方式:wangyc@gdut.edu.cn博士招生学院:信息工程学院硕士招生学院:信息工程学院+物理与光电学院个人简述:长期从事激光技术、保密通信与传感技术等方面的研究。先后 ...
    本站小编 Free考研考试 2021-05-26