吴雅苹
职称 教授 邮箱 ypwu@xmu.edu.cn
办公室 物理楼 402 研究方向 新型半导体光电器件、自旋电子学、石墨烯及类石墨烯二维材料与器件、表面界面物理
课题组网站
姓名
吴雅苹
职称
教授
办公室
物理楼 402
Email
ypwu@xmu.edu.cn
研究领域
新型半导体光电器件、自旋电子学、石墨烯及类石墨烯二维材料与器件、表面界面物理
教育和工作经历
吴雅苹,厦门大学物理学系与美国UT-Austin联合培养博士,2012年获微电子学与固体电子学博士学位。国家优秀青年科学基金获得者,中国真空学会会员,厦门市物理学会监士。长期致力于半导体新结构材料与新功能器件研究工作。主持及承担国家及省市科技项目二十余项,迄今发表SCI等论文六十余篇,SCI他引2800余次,授权专利二十余件。
代表性文章或专著
1. In-plane Anisotropy of Quantum Transport in Artificial Two dimensional Au Lattices, Nano Letters, 2018, 18(3): 1724-1732.
2. Crystal Structure Evolution of Individual Graphene Islands During CVD Growth on Copper Foil, Advanced Materials, 2013, 25(46): 6744-6751.
3. Tuning the Doping Type and Level of Graphene with Different Gold Configurations, Small, 2012, 8(20): 3129-3136.
4. Polarization-Controllable Plasmonic Enhancement on the Optical Response of Two-Dimensional GaSe Layers, ACS Applied Materials & Interfaces, 2019, 11(21): 19631-19637.
5. Strain Manipulation of the Polarized Optical Response in Two-dimensional GaSe Layers, Nanoscale, 2020, 12(6): 4069-4076.
6. Modulating Room Temperature Spin Injection into GaN Towards the High-Efficiency Spin-Light Emitting Diodes, Applied Physics Express, 2020, 13: 043006.
7. Identically Sized Co Quantum Dots on Monolayer WS2 Featuring Ohmic Contact, Physical Review Applied, 2020, 13(2): 024003.
8. Modulation of Spin-Valley Splitting in Two-Dimensional MnPSe3/CrBr3 van der Waals Heterostructure, Journal of Physics D: Applied Physic, 2020, 53(12): 125104.
9. Deeply Exploring Anisotropic Evolution Towards Large-Scale Growth of Monolayer ReS2, ACS Applied Materials & Interfaces, 2019, 12(2): 2862-2870.
10. Large and Controllable Spin-Valley Splitting inmTwo-Dimensional WS2 /h-VN Heterostructure, Physical Review B, 2019, 100(19): 195435.
11. Regulating the Circular Polarization in Nitride-Based Light-Emitting Diodes Through the Spin Injection, Applied Physics Express, 2019, 12(12): 123005-123005.
12. Hydrothermally Stable ZnAl2O4 Nanocrystals with Controlled Surface Structures for the Design of Long-Lastin and Highly Active/Selective PdZn Catalysts, Green Chemistry, 2019, 21(24): 6574-6578.
13. Plasmon-Enhanced Exciton Emissions and Raman Scattering of CVD-Grown Monolayer WS2 on Ag Nanoprism Arrays, Applied Surface Science, 2019, 504: 144252.
14. Improved Open-Circuit Voltage and Repeatability of Perovskite Cells Based on Double-Layer Lead Halide Precursors Fabricated by a Vapor-Assisted Method , ACS Applied Materials & Interfaces, 2019, 11(27): 24132-24139.
15. Synthesis of Wafer-Scale Monolayer WS2 Crystals toward the Application in Integrated Electronic Devices , ACS Applied Materials & Interfaces, 2019, 11(21): 19381-19387.
16. Elect rically Controllable Magnetic Properties of Fe-doped GaSe Monolayer , Journal of Physics D: Applied Physics, 2019, 52(17): 175001.
17. Modification of the Electronic and Spintronic Properties of Monolayer GaGeTe with a Vertical Electric Field , Journal of Physics D: Applied Physics, 2019, 52(11): 115101.
18. Stress Engineering on the Electronic and Spintronic Properties for a GaSe/HfSe2 van der Waals Heterostructure , Applied Physics Express, 2019, 12(3): 031002.
19. Enhanced Photocatalytic Efficiency of ZnO/ZnSe Coaxial Nanowires through Interfacial Strain Modification, Physica E:Low-Dimensional Systems & Nanostructures, 2018, 103: 430-434.
20. Manipulation of Perpendicular Magnetic Anisotropy of Single Fe Atom Adsorbed Graphene via MgO(111) Substrate, Journal of Physics D: Applied Physics, 2018, 51(20): 205001.
21. Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field, Physical Review Applied, 2018, 9(4): 044029.
22. Electrically Tunable Magnetic Configuration on Vacancy-Doped GaSe Monolayer, Physics Letters A, 2018, 382(9): 667-672.
23. Strong Anti-Strain Capacity of CoFeB/MgO Interface on Electronic Structure and State Coupling, Chinese Physics B, 2018, 27(1): 017502.
24. Effect of External Strain on the Charge Transfer: Adsorption of Gas Molecules on Monolayer GaSe , Materials Chemistry and Physics, 2017, 198: 49-56.
25. Modification of Spin Electronic Properties of Fe-n/GaSe Monolayer Adsorption System, Acta Physcia Sinica, 2017, 66(16): 166301.
26. Effects of Interlayer Polarization Field on the Band Structures of the WS2/MoS2 and WSe2/MoSe2 Heterostructures , Surface Science,
27. Modulation of Electronic and Optical Anisotropy Properties of ML-GaS by Vertical Electric Field, Nanoscale Research Letters, 2017, 12: 409.
28. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells , Nanoscale Research Letters, 2017, 12: 160.
29. Effect of Surface Morphology and Magnetic Impurities on the Electronic Structure in Cobalt-Doped BaFe2As2 Superconductors , Nano Letters, 2017, 17(3): 1642-1647.
30. Magnetic Modification of GaSe Monolayer by Absorption of Single Fe Atom, RSC Advanced, 2017, 7(8): 4285-4290.
31. Enhanced Magneto-Optical Effects in Composite Coaxial Nanowires Embedded with Ag Nanoparticles, Scientific Reports, 2016, 6: 29170.
32. Doping Behaviors of Adatoms Adsorbed on Phosphorene , Physica Status Solidi B-Basic Solid State Physics, 2016, 253(6): 1156-1166.
33. Effects of Nitrogen Dopants on the Atomic Step Kinetics and Electronic Structures of O-polar ZnO , Nanoscale, 2016, 8(7): 4381-4386.
34. Evolution of Band Structures in MoS2-Based Homo- and Heterobilayers, Journal of Physics D: Applied Physics, 2016, 49(6): 065304.
35. Effects of Thermally-Induced Changes of Cu Grains on Domain Structure and Electrical Performance of CVD-Grown Graphene, Nanoscale, 2016, 8(2): 930-937.
36. Electro-optic Coefficient Enhancement of AlxGa1-xN via Multiple Field Modulations, ACS Applied Materials & Interfaces, 2015, 7(32): 17707-17712.
37. Theoretical Study of the Interaction of Electron Donor and Acceptor Molecules with Monolayer WS2 , Journal of Physics D: Applied Physics, 2015, 48(28): 285303.
38. Au and Ti induced Charge Redistributions on Monolayer WS2 , Chinese Physics B, 2015, 24(7): 77301.
39. Direct Synthesis of Graphene 3D-Coated Cu Nanosilks Network for Antioxidant Transparent Conducting Electrode, Nanoscale, 2015, 7(24): 10613-10621.
40. Effect of Boron in Fe/MgO Interface on Structural Stability and State Coupling, Computational Materials Science, 2015, 101: 138-142.
41. Novel Evolution Process of Zn-Induced Nanoclusters on Si(111)-(7x7) Surface , Nano-Micro Letters, 2015, 7(2): 194-202.
42. Metal-Atom-Induced Charge Redistributions and Their Effects on the Electrical Contacts to WS2 Monolayers, Physica Status Solidi B-Basic Solid State Physics, 2015, 252: 1783-1791.
43. First-Principles Calculations of Perpendicular Magnetic Anisotropy in Fe1-xCox/MgO(001) Thin Films , Nanoscale Research Letters, 2015, 10: 126.
44. Two-Dimensional Au Lattices Featuring Unique Carrier Transport Preference and Wide Forbidden Gap , Nanoscale, 2014, 6(17): 10118-10125. (期刊论文)
45. Selective Surface Functionalization at Regions of High Local Curvature in Graphene, Chemical Communications, 2013, 49(7): 677-679.
46. Growth Mechanism and Controlled Synthesis of AB-Stacked Bilayer Graphene on Cu-Ni Alloy Foils , ACS Nano, 2012, 6(9): 7731-7738.
47. Toward the Controlled Synthesis of Hexagonal Boron Nitride Films, ACS Nano, 2012, 6(7): 6378-6385.
48. Selective-Area Fluorination of Graphene with Fluoropolymer and Laser Irradiation, Nano Letters, 2012, 12(5): 2374-2378.
49. Detection of Sulfur Dioxide Gas with Graphene Field Effect Transistor, Applied Physics Letters, 2012, 100(16): 163114.
50. Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper foils, ACS Nano, 2012, 6(3): 2471-2476.
51. Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors, Nano Letters, 2012, 12(4): 1806-1812.
52. van der Waals Epitaxy of InAs Nanowires Vertically Aligned on Single-Layer Graphene, Nano Letters, 2012, 12(3): 1431-1436.
53. An Improved Method for Transferring Graphene Grown by Chemical Vapor Deposition, Nano, 2012, 7(1): **.
54. Graphene Growth Using a Solid Carbon Feedstock and Hydrogen , ACS Nano, 2011, 5(9): 7656-7661.
55. Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu-Ni Alloy Foils, Nano Letters, 2011, 11(9): 3519-3525.
56. A Simple Route to Fabricate High Sensibility Gas Sensors Based on Erbium Doped ZnO Nanocrystals, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1-3): 580-584.
57. Atomic Structure and Formation Mechanism of Identically Sized Au Clusters Grown on Si(111)-(7x7) Surface, Journal of Chemical Physics, 2010, 133(12): 124706.
58. Square ZnO Nano-Column and Its Thermal Evolution, Science: China Technological Sciences, 2010, 53(2): 309-312.
59. A Hierarchical Lattice Structure and Formation Mechanism of ZnO Nano-Tetrapods, Nanotechnology, 2009, 20(32): 325709.
60. Pressure Induced Wurtzite-to-Zinc Blende Phase Transition in ZnO at Finite Temperature, Journal of Materials Research, 2008, 23(12): 3347-3352.
代表性专利:
1.国家授权发明专利:一种全电学调控的自旋发光探测一体器件及其制备方法, 2020-01-17, 中国, ZL 2018 1 **.X.
2.国家授权发明专利:一种电场调控的二维自旋电子器件及其制备方法, 2020-02-21, 中国, ZL 2018 1 **.0.
3.国家授权发明专利:一种管式CVD炉用接头、二维材料及其生长装置和方法, 2019-09-06, 中国, ZL 2018 1 **.1.
4.国家授权发明专利:一种具有电场可调极化率的二维旋光器件, 2019-05-31, 中国, ZL 2018 2 **.6.
5.国家授权发明专利:一种具有可控极化率的二维自旋电子器件, 2019-04-09, 中国, ZL 2018 2 **. 2.
6.国家授权发明专利:矢量强磁场下分子束外延及其原位表征装置,专利号1.6
科研基金
1.国家优秀青年基金项目:量子结构生长及其半导体特性研发
2.国家自然科学基金重大研究计划:全同量子点晶格构筑及其量子态间耦合表征
3.科技部国家重点研发计划:半导体新结构材料和新功能器件研究
4.国家自然科学基金面上项目:氮化物/磁性二维材料异质外延及自旋-谷耦合调控应用
5.国家自然科学基金面上项目:III-VI族硫属化物二维材料及其异质结构的可控制备与自旋特性研究
6.国家自然科学基金青年项目:不同维度铁磁材料自旋电子结构模拟、表征与调控
7.福建省科技厅对外合作项目:高效率柔性薄膜太阳能电池的制备及性能研究
8.福建省自然科学基金面上项目:二维窄禁带半导体电子自旋特性调控
9.九江市科技局****人才项目:氮化物半导体自旋调控及其旋光LED应用
任教课程
1、专门化实验
2、大学物理实验
3、开放性实验
4、综合设计实验
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
厦门大学物理科学与技术学院导师教师师资介绍简介-吴雅苹
本站小编 Free考研考试/2021-05-08
相关话题/物理科学与技术学院 厦门
厦门大学物理科学与技术学院导师教师师资介绍简介-吴正云
吴正云职称教授邮箱zhywu@xmu.edu.cn办公室研究方向纳米低维半导体材料及器件的研制和光电性质的研究课题组网站姓名吴正云职称教授Emailzhywu@xmu.edu.cn研究领域纳米低维半导体材料及器件的研制和光电性质的研究教育和工作经历1957年出生,博士、教授长期开展本科生和研究生的教 ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08厦门大学物理科学与技术学院导师教师师资介绍简介-吴志明
吴志明职称教授邮箱zmwu@xmu.edu.cn办公室物理大楼410研究方向主要从事新型纳米结构太阳能电池、二维半导体材料及其器件、宽禁带半导体功率电子器件、旋光二极管、表面物理以及自旋输运等方向研究课题组网站姓名吴志明职称教授办公室物理大楼410Emailzmwu@xmu.edu.cn工作电话个人 ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08厦门大学物理科学与技术学院导师教师师资介绍简介-徐俊
徐俊职称教授邮箱xujun@xmu.edu.cn办公室物理楼360研究方向聚合物-无机纳米复合材料,二维黑磷烯杂化材料,过渡金属氧化物、碳化物的制备锂离子电池电极材料,光电催化电极材料课题组网站姓名徐俊职称教授办公室物理楼360Emailxujun@xmu.edu.cn个人主页http://www. ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08厦门大学物理科学与技术学院导师教师师资介绍简介-叶美丹
叶美丹职称副教授邮箱mdye@xmu.edu.cn办公室物理大楼358研究方向无机微纳米材料,柔性能源器件(染料/量子点敏化太阳能电池、钙钛矿太阳能电池,超级电容器等),光催化,可穿戴生物传感器。课题组网站姓名:叶美丹职称:副教授办公室;物理大楼358Email:mdye@xmu.edu.cn工作电 ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08厦门大学物理科学与技术学院导师教师师资介绍简介-杨志林
杨志林职称教授邮箱zlyang@xmu.edu.cn办公室研究方向纳米光学;表面等离激元光子学课题组网站姓名杨志林职称教授Emailzlyang@xmu.edu.cn研究领域纳米光学;表面等离激元光子学教育和工作经历2011~,厦门大学物理学系教授2007~2009,中科院物理研究所博士后2006~ ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08厦门大学物理科学与技术学院导师教师师资介绍简介-许清池
许清池职称副教授邮箱xuqingchi@xmu.edu.cn办公室物理大楼360研究方向光催化、锂离子电池、功能纳米材料、固体废弃物资源化利用课题组网站姓名:许清池职称;副教授办公室;物理大楼360Email:xuqingchi@xmu.edu.cn工作电话:个人主页;https://cpst.xm ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08厦门大学物理科学与技术学院导师教师师资介绍简介-詹华瀚
詹华瀚职称副教授邮箱huahan@xmu.edu.cn办公室物理大楼406研究方向宽禁带半导体,氧化锌基半导体材料,低维光电材料与器件课题组网站姓名;詹华瀚职称:副教授办公室:物理大楼406Email:huahan@xmu.edu.cn研究领域:宽禁带半导体,氧化锌基半导体材料,低维光电材料与器件教 ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08厦门大学物理科学与技术学院导师教师师资介绍简介-张峰
张峰职称教授邮箱fzhang@xmu.edu.cn办公室物理大楼318研究方向1.宽禁带半导体SiC基MOSFET、IGBT等功率器件研究2.宽禁带半导体紫外光电探测器研究3.宽禁带半导体深能级缺陷与少子寿命研究课题组网站姓名张峰职称教授办公室物理大楼318Emailfzhang@xmu.edu.c ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08厦门大学物理科学与技术学院导师教师师资介绍简介-张武虹
张武虹职称邮箱办公室研究方向课题组网站[1]XiaodongQiu,DongkaiZhang,WuhongZhang,andLixiangChen*,"Structured-pumpenabledquantumpatternrecognition,"PhysicalReviewLetters122, ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08厦门大学物理科学与技术学院导师教师师资介绍简介-张龙
张龙职称副教授邮箱zhanglong@xmu.edu.cn办公室物理楼304研究方向微腔光子学腔量子电动力学纳米半导体纳米激光器课题组网站姓名:张龙职称:副教授办公室:物理楼304Email:zhanglong@xmu.edu.cn研究领域:微腔光子学腔量子电动力学纳米半导体纳米激光器教育和工作经历 ...厦门大学师资导师 本站小编 Free考研考试 2021-05-08