2013年 光学考试大纲初稿

一、考试要求

光学是光学工程专业的一门基础课。其考核目标是要求学生掌握物理光学和 应用光学的基础理论和基本知识,掌握处理光学问题的基本思想和方法。

二、考试内容

第一章 光的干涉

理解光的电磁理论,理解光相干的三个条件,掌握双光束、多光束干涉的特性,条纹分布及特点,理解单层与多层光学薄膜的干涉及其应用,掌握典型的干涉仪的结构与干涉特点,理解光的时间和空间相干性。

第二章 光的衍射

理解光的基本衍射理论,掌握夫琅和费(单缝和圆孔)以及菲涅耳(圆孔和圆屏)衍射的性质以及相关计算,掌握光栅的衍射理论和特点,了解晶体对伦琴射线的衍射作用。

第三章 几何光学的基本原理

掌握几何光学的基本定律,理解球面(平面)和球面(平面)系统中的物像 关系,掌握近轴成像公式,不同放大率的关系,理解理想光学系统基本特性,了 解三个基点和基面的性质,掌握理想光学系统的物像关系,放大率的计算,掌握 理想光学系统组合的计算方法,掌握一般理想光具组的作图求像法。

第四章 光学仪器的基本原理

掌握各种光学仪器的工作原理,了解各种光学仪器的放大本领的计算,了解 像差的产生及分类。

第五章 光的偏振

了解光的偏正特性,掌握光波的反射和折射的电磁理论处理,理解晶体中光 波的传输特性,掌握单轴晶体和双轴晶体的光学性质及其图形表示,理解晶体表 面的光波反射和折射理论及特点,了解相关的晶体光学器件,了解偏振光的干涉。

第六章 光的传播速度

了解测定光速的实验室方法,掌握光的相速度和群速度。

第七章 光的吸收、散射和色散

掌握光的吸收、色散以及散射的特点、相关理论及计算,并能利用理论解释 相关现象。

第八章 光的量子性

了解黑体的经典辐射定律,掌握光电效应、康普顿效应,理解光波的波粒二 象性。

第九章 现代光学基础

掌握原子发光的机理、光与原子之间的相互作用,了解激光产生的基本原理, 掌握激光的基本特性,了解全息术的基本特点。

三、题型

题型包括简答题(30分左右)、作图题(15分左右)以及计算题(105分左右)。

四、参考书

《光学教程》,姚启钧原著,高等教育出版社。

《光学教程》, 叶玉堂等编著, 清华大学出版社。