為多數電土灣 博士研究生培养方案

2012年版(试用)

南京邮电大学研究生院

二 一三年九月

南京邮电大学博士学位授权学科一览表

一级	学科		二级学科
代码	名称	代码	名称
		0803Z1	光电信息材料与器件
0803	光学工程	0803Z2	有机与生物光电子学
		99Ј2	光电信息工程
		080901	物理电子学
	电子科学与技术	080902	电路与系统
0809		080903	微电子学与固体电子学
0009		080904	电磁场与微波技术
		0809Z1	有机电子学
		0809Z2	生物电子学
		081001	通信与信息系统
		081002	信号与信息处理
0810	信息与通信工程	0810Z1	信息安全
		0810Z2	信息网络
		99J3	信息获取与控制

目 录

1. 南京	京邮电大学博士学位研究生培养与学位工作规定	1
2. 博士	上学位研究生培养方案	6
2.1	光学工程学科(材料科学与工程学院)博士研究生培养方案	6
2.2	光学工程学科(光电工程学院)博士研究生培养方案	
2.3	物理电子学学科博士研究生培养方案	10
2.4	电路与系统学科博士研究生培养方案	
2.5	微电子学与固体电子学学科博士研究生培养方案	
2.6	电磁场与微波技术学科博士研究生培养方案	
2.7	有机电子学学科博士研究生培养方案	18
2.8	生物电子学学科博士生培养方案	20
2.9	通信与信息系统学科博士研究生培养方案	22
2.10	信号与信息处理学科博士研究生培养方案	24
2.11	信息安全学科博士研究生培养方案	26
2.12	信息网络学科博士研究生培养方案	28
2.13	信息获取与控制学科博士研究生培养方案	30
附录一	南京邮电大学研究生课程编号说明	32
附录二	南京邮电大学博士研究生课程总目录	33
附录三	南京邮电大学研究生申请学位学术成果要求	35

1. 南京邮电大学博士学位研究生培养与学位工作规定

研发[2013]2号

第一章 总 则

第一条 为了规范研究生培养与学位工作,明确参与研究生培养与学位工作各方的工作 职责,明确研究生培养与学位工作的主要环节及要求,调动各方在研究生培养和学位工作中 的积极性与主动性,形成科学合理的研究生培养质量保证体系,特制定本规定。

第二条 我校博士研究生(包括硕博连读研究生,以下除特别说明统称博士研究生)的培养目标是:培养热爱祖国,遵纪守法,明礼诚信,身心健康,掌握本学科坚实宽广的基础理论、系统的专门知识,能够独立地、创造性地从事科学研究的最高学历层次的专门人才。

各学科应根据上述要求,结合学科的特点,针对学生的知识结构和能力要求,进一步明确本学科博士研究生专业培养目标。

第三条 我校研究生培养管理包括如下层面:学校、学院、学位点和导师。

- 1. 学校层面包括校学位评定委员会和研究生院,是研究生培养规则的制定者、宏观组织者与培养过程、培养质量的评估者,并营造学术环境与氛围,为全校研究生培养提供公共服务。
 - 2. 学院是研究生培养的组织者与实施者,学位点是研究生培养的学术单元。
- 3. 导师是研究生培养的主导力量和第一责任人,全面负责所指导研究生的日常培养教育工作,具体指导研究生的学习、科研和学位论文撰写。
- 4. 学位评定委员会及分委员会是学位与研究生培养的学术管理机构,按《南京邮电大学 学位评定委员会章程》行使其权力。

第二章 学制、学习年限

第四条 博士研究生标准学制为 3 年,在学年限一般为 3~4 年;因特殊原因未能按时毕业的,经批准可延长在学年限,延长年限不超过二年,延长期限后仍不能毕业的,按《南京邮电大学研究生学籍管理实施细则》执行。

硕博连读研究生转博后按本规定执行。

第三章 培养方案与培养计划

第五条 培养方案是各学科研究生培养目标和质量要求的具体体现,是指导研究生科学制订研究生个人培养计划,进行研究生规范化管理的重要依据。有博士学位授予权的学科应根据本办法,结合所在学科、专业的实际,制定本学科博士研究生培养方案。

第六条 制定研究生培养方案的原则与要求

- 1. 研究生培养方案要充分反映国家、社会及学校对研究生培养质量的要求,突出研究生创新能力和综合素质的培养。
- 2. 培养方案的内容主要包括培养目标、主要研究方向、学分设置与要求、论文选题与开 题要求、学术成果要求等。
- 3. 提倡按一级学科制定博士研究生培养方案,以利于学科交叉和培养复合型人才。对学科跨度较大的一级学科,也可按二级学科制定。

第七条 研究方向

- 1. 凝练研究方向是制(修)订研究生培养方案的基础工作。围绕研究方向确定培养目标、课程设置和实践环节。
- 2. 研究方向设置要科学规范、宽窄适度,相对稳定,数量不宜过多。一级学科一般不宜超过12个研究方向。二级学科的研究方向一般为4到5个。

所设方向应属于本学科专业领域,且具有前沿性、先进性和前瞻性,并能体现我校的办学优势和特色,要充分反映该学科点的内涵和发展趋势。

- 3. 设置研究方向的基本依据
- (1) 有结构合理且稳定的学术队伍;
- (2) 有较好的科研基础和科研成果;
- (3) 能开出本研究方向的相关课程:
- (4) 属交叉学科的,要具有明显的学科发展潜力。

第八条 培养方案的制定

- 1. 研究生培养方案原则上每三年制(修)订一次。期间,为提高培养质量的需要,各学 科和领域的培养方案可进行微调,但必须报研究生院学位与培养办公室批准。
- 2. 培养方案的制(修)订由学院负责组织,学位点负责制定,报研究生院研究生学位与评定办公室审核符合本规定,经校学位评定委员会审批通过执行。
- 3. 在培养方案提交校学位委员会批准之前,研究生院学位与培养办公室可以对培养方案给出评估结果、提出培养方案修改与调整的建议与要求。

第九条 研究生培养计划的制定与执行

- 1. 导师应根据本规定、学科专业培养方案,结合研究生个人情况,在博士研究生新生入 学后二个月内指导研究生制定出切实可行的个人培养计划。硕博连读研究生取得博士生资格 后应制订博士研究生培养计划。
- 2. 个人培养计划经导师和学科负责人审定后,递交学院和学位与培养办公室存档。培养计划确定后,研究生和导师均应严格遵守。
 - 3. 学院应在研究生入学两个月后组织各学位点检查与审核研究生培养计划。
 - 4. 对无培养计划的研究生, 所修学分无效, 第二学期不予注册。
 - 5. 培养计划列入的课程,如考试不及格,必须重修,重修次数记入学籍表。
- 6. 研究生院学位与培养办公室在进行质量检查与评估时发现问题,可通过学院要求导师 更改或调整研究生培养计划。

第十条 个人培养计划因客观情况发生变化而不能执行或不能完全执行的,必须于变动课程授课学期开学后两周内填写申请表申请修订,经导师和学科负责人审定同意后,由学院报研究生院学位与培养办公室批准后方可调整。

第四章 课程设置与学分要求

第十一条 博士研究生培养的学分分为课程学分和必修环节学分两部分。博士研究生必须修满 15 个课程学分(其中学位课至少 8 学分)和 4 学分必修环节。

第十二条 硕博连读研究生必须修满 34 个课程学分(其中包括硕士研究生阶段的学位课程 17 学分、专业实验实践技能类课程 2 分及博士阶段的学分要求)并完成博士阶段的必修环节要求。

第十三条 课程设置及学分要求

(一) 学位课

1. 公共课: 4 学分

- (1)中国马克思主义与当代,36学时,计2学分;
- (2)博士英语, 48 学时, 计 2 学分。
- 2. 专业基础课(数理类): 2 学分
 - 一门, 按多选一设置。
- 3. 专业课: 2 学分
 - 一门, 按多选一设置。
- (二) 非学位课
- 1. 必修课
 - (1) 科技论文写作(英文), 32 学时, 计 2 学分;
 - (2) 主攻方向学术专著阅读, 计1学分。
- 2. 选修课:修满必须的课程学分。

从博士研究生课程目录中选择

3. 补修课

跨学科或以同等学力录取的博士研究生必须补修 1-2 门本专业本科生必修课。各专业需确定补修课程范围,由导师根据学生的基础情况确定学生的补修课程。补修课成绩必须合格,否则不能申请学位。补修课不计学分。

第十四条 博士生的课程教学计划应在第一学年内完成。

第十五条 对入学前已在本校参加博士研究生课程旁听且考试成绩合格的课程,如果符合本学科培养方案的要求,可以申请免修。对联合培养研究生,在其他高校(211层次以上高校或外国高水平大学)学习的课程,如果符合本学科培养方案的要求,可以申请免修。

申请免修可在课程授课学期开学后二周内提出申请(附旁听原始成绩单,成绩有效期2年),经导师和任课教师同意后,报研究生院学位与培养办公室审批、备案。

第十六条 研究生课程由研究生院学位与培养办公室按《南京邮电大学研究生课程管理 办法》统一管理。学位课必须在制(修)订培养方案时确定,其他课程根据需要进行设置和 调整。研究生院学位与培养办公室每学年公布一次研究生课程目录。

第十七条 博士研究生必修环节学分

- 1. 选题综述报告及开题报告计1学分。
- 2. 学术活动 1 学分。

博士生在攻读博士学位期间必须:

- (1)参加学术活动 5次以上,或在全校范围内作至少 2次学术报告。
- (2) 参加本学科领域重要的学术会议 2 次以上,其中至少一次的会议语言是英文,并在会上用英文宣读论文至少 1 次。
 - 3. 科研实践, 计1学分。

研究生要积极参加导师的各类科研项目(包括预研项目),科研项目也包括江苏省研究 生创新工程项目,参加项目后必须写出研究报告。

4. 教学实践, 计1学分。

教学实践可采取部分讲授本科或硕士研究生课程,协助指导硕士论文等。

第五章 科研实践能力训练与培养

第十八条 科研工作是培养研究生掌握科研方法、提高科研能力的重要手段,也是研究生完成学位论文的基础。科研实践技能的培养与训练必须贯穿研究生培养的全过程,要采取措施加强研究生科研实践能力的培养。

- 1. 导师有责任和义务为研究生开展各类科研工作提供科研、技术开发的训练内容。研究 生必须积极参加导师的科研工作,成为导师的科研助手和科研小组的主要成员。
 - 2. 导师在制定博士研究生培养计划时应对科研实践环节进行设计。
 - 3. 博士研究生应加强独立进行科研工作能力的训练。
- 4. 各学院和学科要充分利用科研平台和学科建设平台,为博士研究生提供科研训练环境。
 - 5. 经导师同意,博士研究生可到省级企业研究生工作站进行相关科研工作。

第六章 中期考核与学科综合考试

第十九条 中期考核是研究生培养过程的重要环节,也是规范研究生教育管理、保证研究生培养质量的重要举措。考核的主要内容包括:研究生个人总结、学分(包括课程学习及必修环节)完成情况审核、论文发表及获奖情况、学位论文选题情况、导师评价以及考核小组考核等。博士研究生中期考核可结合学科综合考试同时进行。

第二十条 学科综合考试

博士研究生应该完成课程学习,修满学分,在规定的时间内进行学科综合考试。逾期未考者按不合格处理。

学科综合考试由考试委员会主持,导师可以参加考试委员会,但不能担任主席。考试委员会的组成须经研究生院学位与培养办公室审核批准后,考试方可进行。考试的方式可以是口试或笔试,也可以是口、笔兼试,对博士研究生学科知识、研究能力和外语水平等进行综合考察,按合格和不合格两级评定成绩并写出评语,考试委员三分之二以上(含三分之二)赞成合格者,方为通过综合考试。

考试成绩不合格的,经考试委员会同意,三个月后可以补考一次。对补考仍不合格者,由考试委员会提出转读硕士学位或予以退学的建议,学院主管领导审查,报研究生院审核后提请校长批准。

第七章 学位论文

第二十一条 学位论文是研究生培养工作的重要组成部分,是对进行科学研究或承担专门技术工作的全面训练,是培养博士研究生创新能力,综合运用所学知识发现问题、分析问题和解决问题能力的主要环节。

第二十二条 博士学位论文应选择学科前沿领域或对我国经济和社会发展有重要意义的课题,能体现学位论文的创新性和先进性;博士学位论文应是一篇系统而完整的学术论文,应在科学或专门技术上做出创造性的研究成果,应该能反映出博士生具有坚实的理论基础和系统的专门知识,具有从事独立科学研究工作的能力。

第二十三条 博士研究生学位论文工作应包括选题、开题报告、课题研究、学位论文撰写、预答辩、答辩申请、评审与答辩等环节。

第二十四条 选题是学位论文成败的关键,也是培养学生发现问题能力和创新能力的重要环节。博士生入学后在导师的指导下确定研究方向,通过各种形式的调研,阅读 120 篇以上学术论文(其中英文学术论文不少于 100 篇),在充分了解国内外技术前沿的基础上进行选题,以确保选题的科学性、先进性和可行性。选题过程中,导师、学生要通过不断交流就所选研究课题的研究意义、国内外现状(论文综述报告)、研究目标、研究内容、拟解决的关键学术问题、研究方法和技术路线、创新点及完成的可行性等达成一定程度的共识,在此基础上完成开题报告。

第二十五条 博士研究生开题报告必须在至少由 3~5 名本学科和相关学科教授组成的专家论证会上,就课题的研究范围、意义和价值、拟解决的问题、研究方案及研究进度等作出说明,并进行可行性论证,经过认可后才能进行课题研究。学位与培养办公室可对开题报告进行各种形式的检查和评估。达不到要求的应重新开题。开题报告完成一年以上方可申请学位论文答辩。

第二十六条 研究生在课题研究和学位论文撰写过程中,必须严格遵守学术规范和学术 道德。引用别人的科研成果必须明确指出,与别人合作的部分应说明本人的具体工作。具体 按《南京邮电大学研究生学术规范》执行。

第二十七条 学位论文预答辩

博士研究生完成全部课程学习、完成学位论文且导师认为论文质量达到申请博士学位水平要求,可申请学位论文预答辩。

博士学位论文预答辩由导师聘请同行专家 3~5 人组成预答辩委员会, 预答辩委员会主席由外校博士生导师担任。预答辩按正式答辩的程序和要求公开进行,由预答辩委员会主席主持。

预答辩委员会应对博士学位论文进行严格、认真审查,重点检查博士学位论文的创新性、 论文工作量、有无违反学术规范现象等,并详细指出论文中存在的不足和问题,提出改进意 见。

需要作重大修改的论文,预答辩后修改论文的时间不少于三个月;通过预答辩的论文, 经不少于一个月的时间进一步完善论文后、经导师同意可提出正式答辩的申请。

第二十八条 论文评阅、答辩

博士学位论文撰写格式按《南京邮电大学研究生学位论文撰写标准》执行;博士学位论文的评阅按《南京邮电大学博士学位论文评审办法》进行,论文答辩按《南京邮电大学博士学位授予工作细则》进行。

第二十九条 研究生从事毕业论文的工作内容、所取得成果的知识产权属南京邮电大学。 与外单位联合培养研究生或联合开展毕业论文的,根据合作合同判定知识产权归属。

第三十条 在研究生学位论文工作中,导师要做到指路、防偏、掌握进度、把握水平、 定期检查,注意培养研究生严谨治学态度,高尚的职业道德和良好的团结协作精神,严守学 术道理规范。

第八章 研究生毕业、学位申请与授予

第三十一条 博士研究生完成培养计划所列课程,学分达到要求,通过预答辩,学术成果达到《南京邮电大学研究生申请学位学术成果要求》的答辩要求,可申请学位论文的答辩。答辩通过者,可获得博士研究生毕业证书。

第三十二条 学位论文答辩通过者,学术成果达到培养方案要求,可提出博士学位申请。 第三十三条 学位授予按《南京邮电大学博士学位授予工作细则》进行。

第九章 附则

第三十四条 本规定从 2012 年入学的研究生开始执行,以往有关规定与此不一致的,以本规定为准。

第三十五条 本规定由研究生院学位与培养办公室负责解释。

2. 博士学位研究生培养方案

2.1 光学工程学科(材料科学与工程学院)博士研究生培养方案

	一级学科名称	光学工程	一级学科代码	0803		
	二级学科名称		二级学科代码			
学科简介	本学科拥有一支在光电材料科学及相关领域具有很强攻坚创新能力、在国内外享有简 较高学术地位的教学科研团队,由包括中国科学院院士,中央组织部溯及既往 "千人计划" 国家特理专家 教育如"长江学者"特理教授" 国家"本山事东利学其会"苏祖者					
培养目标	专门知识;熟练掌;好的口语和听力能,立从事新型光电材,究工作的能力;有,	面发展、在本学科上掌握坚握一门外国语,能够熟练阅力,能进行国际学术交流; 时、光电显示、光伏、激光 严谨的科研作风,良好的合成果的高级科技专门人才。	读和写作本领域相关的 熟悉本学科研究前沿和 技术、光电传感、光电	科技论文,具有较 发展趋势,具有独 检测等领域科学研		
研究方向	1. 光电信息标 2. 光学材料与 3. 有机光电子 4. 生物光电子 5. 光通信与光	5光纤 C学 C学				

学分设置与要求 (学位课不少于8学分)

	类	别	课程名称	学时	学分	开课 学期	备注			
		八十二田	中国马克思主义与当代	36	2	1				
		公共课	英语	48	2	1				
	334		现代半导体物理	32	2	2				
	学 位	基础课	高等有机波谱分析	32	2	2	三选一			
	课		生物电子学	32	2	2				
课			薄膜器件物理	32	2	2				
					专业课	高等有机化学	32	2	1	三选一
			纳米生物学	32	2	1				
程		必修课	科技论文写作(英语)	40	2	1				
	非	少形床	主攻方向学术专著阅读		1	1~3				
	学		光电子技术基础	32	2	2				
	位	选修课	纳米技术导论	32	2	2	多选二			
	课		有机电子学	32	2	1	多地—			
			生物化学与分子生物学	32	2	1				
必	文献综述与开题报告			1						
修	学术活动 (5次以上)			1						
环	科研实践			1						
节	教学:	实践			1					

学位论文选题与开题要求:

学位论文选题应具有一定的创新性、先进性,并能考虑社会、经济前景,密切结合国家建设实际,解决现代化建设中一些急需解决的难题,对国民经济和社会发展有一定的理论价值和实际意义。选题过程中,导师、学生要通过不断交流就所选研究课题的研究意义、国内外现状(论文综述报告)、研究目标、研究内容、拟解决的关键学术问题、研究方法和技术路线、创新点及完成的可行性等达成一定程度的共识,在此基础上完成开题报告。

申请学位的成果要求:

1、不低于《南京邮电大学研究生申请学位学术成果要求》; SCI 文章的 IF 加和≥5.0, 其中非第一作者 IF 值的计算方法如下: 1/n2 * IF (IF 以最新值为参考值, n 为作者在文章中的排序)。2、文章发表在 Nature 期刊和 Science 期刊中或其子刊中, 有署名即可申请答辩。满足以上二个条件之一即可申请答辩。

硕博连读生:

1、不低于《南京邮电大学研究生申请学位学术成果要求》; SCI 文章的 IF 加和≧8.0,其中非第一作者 IF 值的计算方法如下: 1/n2 * IF (IF 以最新值为参考值, n 为作者在文章中的排序)。2、文章发表在 Nature 期刊和 Science 期刊中或其子刊中,有署名即可申请答辩。 满足以上二个条件之一即可申请答辩。

其他说明:无

2.2 光学工程学科(光电工程学院)博士研究生培养方案

	一级学科名称	光学工程	一级学科代码	0803			
	二级学科名称 光电信息工程 二级学科代码 99J2						
学科简介	信息与通信工程等学科相互渗透而形成的交叉学科。作为影响二十一世纪信息产业发展水平的重要技术,光电信息工程学科已成为通讯、能源、存储、显示、工业自动化以及						
培养目标	论基础,应对本学和 能熟练使用计算机, 独立从事科学研究,	立获得者应在信息光电子] 斗研究前沿和发展趋势具有 至少熟练掌握一门外国语 对本学科某方面具有深入 备成为学术带头人或项目负	系统深入的了解,应掌护。有严谨求实的科学态 研究并取得独创性成果	屋相应的实验技术, 度和工作方法,能 ,能承担相关的研			
研究方向	 光电子器件 光通信与光 光电传感与 高速光通信 	:波技术 ;信息处理技术					

学分设置与要求 (学位课不少于8学分)

	类	别	课程名称	学时	学分	开课 学期	备注			
		V +F3H	中国马克思主义与当代	36	2	1				
		公共课	英语	48	2	1				
	学	基础课	高等光学	32	2	2	二选一			
	位	李 仙床	光子学导论	32	2	1	<u>\</u>			
	课		光学信息原理与技术	32	2	2				
课		专业课	光子晶体理论与应用	32	2	2	三选一			
			先进光纤通信系统	32	2	1				
程			科技论文写作(英语)	40	2	1	必修			
	非	非 必修课	微流控光学技术 (学术文献选读)	16	1	2	二选一			
	学		THz 器件技术(学术文献选读)	16	1	2	<u>\</u>			
	位 课		•			先进信息光子技术	32	2	2	
				选修课	微机电系统及其应用	32	2	2	多选二	
			从相关学科博士生课程目录中选		2					
必	文献综述与开题报				1					
修	学术	学术活动 (5次以上)			1					
环	科研	实践			1					
节	教学	实践			1		_			

学位论文选题与开题要求: 按学校要求执行。 申请学位的成果要求: 按《南京邮电大学研究生申请学位学术成果要求》执行。 其他说明: 无

2.3 物理电子学学科博士研究生培养方案

	一级学科名称	电子科学与技术 一级学科代码		0809		
	二级学科名称	物理电子学	二级学科代码	080901		
学科简介	物材料等功能材料的元激发及其信息呈现、传输、调控、储存等的基本原理和物理机制、基本现象和效应的研究,以及基本器件和系统的设计、制备、集成、应用等的技术和工艺研究,涉及电子学、光学、光电子学、材料等学科及相关技术的交叉与融合,以及在					
培养目标	理论、系统的专业给 状、前沿动态和发展 研究等多方面的能力 等研究能力,具有各 本学科博士生生	学态度和求真求实的科学精 知识和宽广的相关学科知识 展趋势。具有熟练的英语应 力,具有创造性进行科学探 独立承担研究、分析和解决 华业后应是电子科学与技术 术企业和事业单位等的教学	,熟悉电子信息领域的 用、计算机编程应用、 索、新技术研究、光电 本学科领域科学和技术 领域的高级专门人才,	国内外科学技术现 电子科学技术实验 子器件和产品研发 问题的能力。 能胜任高等院校、		
研究方向	1. 物理电子学》 2. 纳功能器件》 3. 电子材料及》 4. 电子器件与影	及物理 应用				

学分设置与要求 (学位课不少于8学分)

	类	别	课程名称	学时	学分	开课 学期	备注
		公 井 津	中国马克思主义与当代	36	2	1	
		公共课	英语	48	2	1	
		基础课	高等物理电子学	32	2	1	二选一
	学	李 仙床	现代光电子技术	32	2	1	<u>\</u>
课	位	•	电子科学与技术新进展	32	2	1	
	课		纳米物理学	32	2	1	五选一
			计算电磁学	32	2	1	
程			光电子器件与组件	32	2	1	
			射频/微波电路设计	32	2	2	
	非	N. 11. NET	科技论文写作(英语)	40	2	1	
	学 位	必修课	主攻方向学术专著阅读		1	1~3	
	课	选修课	从相关学科硕士、博士生课程中选		2		多选二
必	文献综述与开题报告				1		
修	学术	学术活动 (5 次以上)			1		_
环	科研究	实践			1		
节	教学:	实践			1		

学位论文选题与开题要求:

按学校要求执行。

申请学位的成果要求:

发表被 SCI 收录的论文 2 篇以上(含 2 篇)(不低于《南京邮电大学研究生申请学位学术成果要求》)。

其他说明:

无

2.4 电路与系统学科博士研究生培养方案

	一级学科名称 电子科学与技术 一级学科代码		0809	
	二级学科名称	电路与系统	二级学科代码	080902
学科简介	信息处理方向针对 的智能信号处理理 协作通信技术、网络	电子科学与技术一级学科下 无线通信网络和传感器网络 论、技术和算法,主要包括 各编码技术、高能量有效信 通信工程、计算机科学与技	,研究其中有关信息编 无线通信中的 MIMO 技术 息传输技术以及 D2D 无	解码、调制和接收 、空时编码技术、线通信技术等。本
培养目标	理论、现在通信与	位获得者应具有坚实的外语 信号处理理论知识,对本学 问题、分析问题和解决问题 的工程管理能力。	科的研究前沿和发展趋	势有系统深入的了
研究方向	1. 智能信息处	上 理		

学分设置与要求 (学位课不少于8学分)

	类	别	课程名称	学时	学分	开课 学期	备注
		V/ ++-3:III	中国马克思主义与当代	36	2	1	
		公共课	英语	48	2	1	
	学	甘力以田	最优化理论应用	40	2	1	一 24.
课	位课	基础课	数学模型	40	2	1	二选一
		专业课	现代数字通信	32	2	2	一 24.
		女业床	现代信息论	32	2	2	二选一
程	非学位课	非 以极调	科技论文写作(英语)	32	2	1	
		必修课	主攻方向学术专著阅读		1	1~3	
		选修课	从博士研究生课程目录中选择		4		多选二
必	文献综述与开题报告 学术活动 (5次以上) 科研实践			1			
修				1			
环					1		
节	教学:	实践			1		

学位论文选题与开题要求:

按学校要求执行。

申请学位的成果要求:

按《南京邮电大学研究生申请学位学术成果要求》执行。

其他说明:

硕士研究生期间未修过"随机过程"的,要求补修硕士"随机过程",不计学分。

2.5 微电子学与固体电子学学科博士研究生培养方案

	一级学科名称	电子科学与技术	一级学科代码	0809			
	二级学科名称	微电子学与固体电子学	二级学科代码	080903			
学科	十一世纪重点发展的出的科学,是研究作	本电子学是电子科学与技术 的学科之一。它是一门研究 言息载体的科学,构成了电 支术和信息技术的发展。因见	并实现信息获取、传输 子科学与信息科学的基	、储存、处理和输石,其发展水平直			
简介	电路与系统、通信	它涉及到微电子学与固体电子学的理论,信息的获取、存储、处理与控制,并且和 电路与系统、通信与信息系统、信号与信息处理、电子工程学、物理电子学、电磁场与 微波技术、材料科学与工程、自动控制以及计算机科学与技术等多个学科有着密切的联系。					
		舌:半导体物理与固体物理 制造技术,系统芯片、微机					
培养目标	论基础,应对本学和工作方法,能独立 能承担相关的研究。 工作能力;能熟练	立获得者应在微电子与固体 科研究前沿和发展趋势具有 立从事科学研究,对本学科 与开发课题,具备成为学术 使用计算机和仪器设备进行 门外国语,能熟练地阅读本	系统深入的了解,有严 某方面具有深入研究并 带头人或项目负责人的 实验研究,具有较强的	谨求实的科学态度 取得独创性成果, 素质,且具有管理 分析问题和解决问			
研究方向	1. 射频微机电 2. 功率器件与 3. 射频器件与 4. 微纳电子器	·功率集成电路 ·射频集成电路					

学分设置与要求 (学位课不少于8学分)

	类	别	课程名称	学时	学分	开课 学期	备注			
		公共课	中国马克思主义与当代	36	2	1				
		公共保	英语	48	2	1				
	学	甘力以田	应用泛函分析	40	2	1	一 24.			
课	位课	基础课	现代半导体器件物理	32	2	2	二选一			
	7,10	•		,	专业课	最优化理论应用	40	2	1	一 24.
程		女巫珠	微电子机械系统	32	2	2	二选一			
	非	N. 14 NIII	科技论文写作 (英语)	40	2	1				
	学位	必修课	主攻方向学术专注阅读		1	1~3				
	课	选修课	从博士研究生课程目录中选择		4		多选二			
必	文献统	宗述与开剧			1					
修	学术活动 (5次以上)		次以上)		1					
环	科研实践				1					
节	教学:	实践			1					

其他	
学位论文选题与开题要求:	
按学校要求执行。	
申请学位的成果要求:	
按《南京邮电大学研究生申请学位学术成果要求》执行。	
其他说明:	
无	

2.6 电磁场与微波技术学科博士研究生培养方案

	一级学科名称	电子科学与技术	一级学科代码	0809		
	二级学科名称	电磁场与微波技术	二级学科代码	080904		
学科简介	本学科既是其它一些学科如无线通信、雷达、遥感、电磁兼容、生物电磁学等的基础,同时它自身又直接为现代科技提供了重要的理论与技术支持,如无线通信、电子对					
培养目标	础,应对本学科研究,然后,是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	位获得者应在电磁场与微波 究前沿和发展趋势具有系统 至少熟练掌握一门外国语。 对本学科某方面具有深入研 成为学术带头人或项目负责	深入的了解,应掌握相 有严谨求实的科学态度 究并取得独创性成果,	应的实验技术,能 和工作方法,能独 能承担相关的研究		
研究方向	3. 无线通信与	之及其在信息技术中的应用				

学分设置与要求 (学位课不少于8学分)

	类	别	课程名称	学时	学分	开课 学期	备注					
		V/ ++ 3 III	中国马克思主义与当代	36	2	1						
		公共课	英语	48	2	1						
	学位	甘力以田	应用泛函分析	40	2	1	一 24.					
课	课	基础课	计算电磁学	32	2	1	二选一					
		.,.	,,,	,,,	,,,	,,	专业课	微波电路	32	2	2	一件一
程		夕业床	无线通信中的电磁兼容性理论	32	2	2	二选一					
	非学位课	小 623田	科技论文写作 (英语)	40	2	1						
		-	必修课	主攻方向学术专注阅读		1	1~3					
		选修课	从博士研究生课程目录中选择		4		多选二					
必	文献统	宗述与开剧			1							
修环	学术活动 (5次以上)				1							
	科研究	科研实践			1							
节	教学:	实践			1							

其他
学位论文选题与开题要求:
按学校要求执行。
申请学位的成果要求:
按《南京邮电大学研究生申请学位学术成果要求》执行。
其他说明:
无

2.7 有机电子学学科博士研究生培养方案

	一级学科名称 电子科学与技术 一级学		一级学科代码	0809			
	二级学科名称	二级学科名称 有机电子学 二级学科代码		0809Z1			
学科简介	有机电子学是今年来异军突起的、具有革命意义的新兴学科,这是一门综合了光子学、电子学、材料科学、有机化学、高分子科学、半导体物理学等众多学科相交叉的前沿学科。有机电子学作为新兴科学研究领域,已经影响到电子、信息、生命、能源和环境等多个与国民经济密切相关的关键环节,被公认为是未来高新技术发展的重要支柱。有机电子学的理论基础包括有机半导体、分子工程纳米技术、生物信息传感、器件制备等。有机电子学是围绕有机半导体为核心,以化学、电子、材料与物理等众多基础学科为基础,侧重拓展其在信息显示、传感、存储和数据处理等领域的相关技术应用。						
培养目标	识,具备独立从事科学研究的能力,在本领域基础科学或应用技术方面做出具有创新性成果的高级科学研究或技术专业人才。						
研究方向	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 电池 (OPV)	女发光 OLED,硅基液晶显	見示 LCoS)			

学分设置与要求 (学位课不少于8学分)

	类	别	课程名称	学时	学分	开课 学期	备注
		公共课	中国马克思主义与当代	36	2	1	
		公开床	英语	48	2	1	
			现代半导体物理	32	2	2	
	学	基础课	有机电子学	32	2	1	三选一
	位		光电信息材料与器件	48	3	1	
课	课		薄膜器件物理	32	2	2	
床		专业课	高等有机化学	32	2	1	四选一
			光谱原理与应用	32	2	1	
程			高等有机波谱分析	32	2	2	
作生	非	业修课	科技论文写作(英语)	40	2	1	
			主攻方向学术专注阅读		1	1~3	
	学		光电子技术基础	32	2	2	
	位	选修课	纳米技术导论	32	2	2	多选二
	课	起修床	生物电子学	32	2	2	多地一
			生物化学与分子生物学	32	2	1	
必	文献综述与开题报告			1			
修	学术活动 (5次以上)			1			
环	科研实践			1			
节	教学	实践			1		

其他:

学位论文选题与开题要求:

学位论文选题应具有一定的创新性、先进性,并能考虑社会、经济前景,密切结合国家建设实际,解决现代化建设中一些急需解决的难题,对国民经济和社会发展有一定的理论价值和实际意义。选题过程中,导师、学生要通过不断交流就所选研究课题的研究意义、国内外现状(论文综述报告)、研究目标、研究内容、拟解决的关键学术问题、研究方法和技术路线、创新点及完成的可行性等达成一定程度的共识,在此基础上完成开题报告。

申请学位的成果要求:

1、不低于《南京邮电大学研究生申请学位学术成果要求》; SCI 文章的 IF 加和≥5.0, 其中非第一作者 IF 值的计算方法如下: 1/n2 * IF (IF 以最新值为参考值, n 为作者在文章中的排序)。2、文章发表在 Nature 期刊和 Science 期刊中或其子刊中, 有署名即可申请答辩。满足以上二个条件之一即可申请答辩。

硕博连读生:

1、不低于《南京邮电大学研究生申请学位学术成果要求》; SCI 文章的 IF 加和≧8.0, 其中非第一作者 IF 值的计算方法如下: 1/n2 * IF (IF 以最新值为参考值, n 为作者在文章中的排序)。2、文章发表在 Nature 期刊和 Science 期刊中或其子刊中, 有署名即可申请答辩。满足以上二个条件之一即可申请答辩。

跨学科或以同等学力录取的研究生的补修课程(不超过两门): 1. 普通物理 2. 大学化学

其他说明:无

2.8 生物电子学学科博士生培养方案

一级学科名称		科名称 电子科学与技术 一级学科代码		0809		
	二级学科名称	生物电子学	二级学科代码	0809Z2		
学科简介	名					
培养目标	培养在生物电子学、生物纳米技术、分子影像学等方面有宽广而扎实的理论基础,能在生物、材料、电子和医学等交叉学科中进行前沿科学研究,并推动信息科学技术发					
研究方向	1. 化学与生物 2. 分子影像]传感				

学分设置与要求 (学位课不少于8学分)

	类 别		课程名称	学时	学分	开课 学期	备注
		八十二田	中国马克思主义与当代	36	2	1	
		公共课	英语	48	2	1	
			高等有机波谱分析	32	2	2	
	学	基础课	光电信息材料与器件	48	3	1	四选一
	位	垄仙床	生物化学与分子生物学	32	2	1	1476
课	课		纳米生物学	32	2	1	
		专业课	光谱原理与应用	32	2	1	
			生物电子学	32	2	2	三选一
程			化学与生物传感	32	2	2	
	п.	非必修课学	科技论文写作(英语)	40	2	1	
			主攻方向学术专注阅读		1	1~3	
	子位		光电子技术基础	32	2	2	
	课	选修课	纳米技术导论	32	2	2	多选二
			有机电子学	32	2	1	
必	文献综述与开题报告			1			
修	学术活动 (5次以上)			1			
环	科研实践			1			
节	教学:	实践			1		

学位论文选题与开题要求:

学位论文选题应具有一定的创新性、先进性,并能考虑社会、经济前景,密切结合国家建设实际,解决现代化建设中一些急需解决的难题,对国民经济和社会发展有一定的理论价值和实际意义。选题过程中,导师、学生要通过不断交流就所选研究课题的研究意义、国内外现状(论文综述报告)、研究目标、研究内容、拟解决的关键学术问题、研究方法和技术路线、创新点及完成的可行性等达成一定程度的共识,在此基础上完成开题报告。

申请学位的成果要求:

1、不低于《南京邮电大学研究生申请学位学术成果要求》; SCI 文章的 IF 加和≥5.0, 其中非第一作者 IF 值的计算方法如下: 1/n2 * IF (IF 以最新值为参考值, n 为作者在文章中的排序)。2、文章发表在 Nature 期刊和 Science 期刊中或其子刊中,有署名即可申请答辩。满足以上二个条件之一即可申请答辩。

硕博连读生:

1、不低于《南京邮电大学研究生申请学位学术成果要求》;SCI 文章的 IF 加和 \geq 8.0,其中非第一作者 IF 值的计算方法如下:1/n2 * IF (IF 以最新值为参考值,n 为作者在文章中的排序)。2、文章发表在 Nature 期刊和 Science 期刊中或其子刊中,有署名即可申请答辩。满足以上二个条件之一即可申请答辩。

其他说明:

无

2.9 通信与信息系统学科博士研究生培养方案

	一级学科名称	信息与通信工程	一级学科代码	0810		
	二级学科名称	通信与信息系统	二级学科代码	081001		
学科简介	事部门的各种通信和信息系统。					
培养目标	培养博士研究生具有严谨的治学态度和实事求是的工作作风,掌握通信与信息领域坚实宽广的基础理论和系统深入的专业知识,能够深入了解和掌握国内外通信和信息领域。					
研究方向	 移动通信 宽带无线通 下一代网络 智能光波通 卫星通信 	,				

学分设置与要求 (学位课不少于8学分)

	类	别	课程名称	学时	学分	开课 学期	备注
		V/ ++ 3 III	中国马克思主义与当代	36	2	1	
		公共课	英语	48	2	1	
\ <u>\</u>	学 位	基础课	从博士研究生课程目录数学类课程 中选择	40	2	1	多选一
课	课	1	现代数字通信	32	2	2	必修
			现代信息论	32	2	2	一 24.
程			现代信号处理	32	2	2	二选一
	非 学 必修课 位 课 选修课	科技论文写作(英语)	40	2	1		
		少形床	主攻方向学术专注阅读		1	1~3	
		选修课	从博士研究生课程目录中选择	32	2		多选二
必	文献统	综述与开剧			1		
修环	学术	学术活动 (5次以上)			1		
	科研究	科研实践			1		
节	教学:	实践			1		

学位论文选题与开题要求:

应选择本学科前沿领域或对我国经济和社会发展有重要意义的课题; 开题报告必须在至少由3名本学科和相关学科教授组成的专家论证会上通过; 开题报告完成一年以后方可申请学位论文答辩。

申请学位的成果要求:

按《南京邮电大学研究生申请学位学术成果要求》执行。

其他说明:

无

2.10 信号与信息处理学科博士研究生培养方案

	一级学科名称 信息与通信工程 一级学科代码		0810			
二级学科名称 信号与信息处理 二级学科代码				081002		
学科简介	一					
培养目标	养					
研究方向	 无线通信中 语音处理与 图像处理和 智能信号与 多媒体通信 信号与信息 	现代语音通信 网络视频传输 信息处理 与信息处理				

学分设置与要求 (学位课不少于8学分)

	类	别	课程名称	学时	学分	开课 学期	备注
		V/ ++ 3 III	中国马克思主义与当代	36	2	1	
		公共课	英语	48	2	1	
\m	学 位	基础课	从博士研究生课程目录数学类课程 中选择	40	2	1	多选一
课	课		现代信号处理	32	2	2	必修
			现代信息论	32	2	2	一 24.
程			现代数字通信	32	2	2	二选一
	非学位课	S	科技论文写作 (英语)	40	2	1	
		,	主攻方向学术专注阅读		1	1~3	
		选修课	从博士研究生课程目录中选择	32	2		多选二
必	文献	文献综述与开题报告			1		
修环	学术	学术活动 (5次以上)			1		
	科研	实践			1		
节	教学	实践			1		

学位论文选题与开题要求:

应选择本学科前沿领域或对我国经济和社会发展有重要意义的课题; 开题报告必须在至少由 3 名本学科和相关学科教授组成的专家论证会上通过; 开题报告完成一年以后方可申请学位论文答辩。

申请学位的成果要求:

按《南京邮电大学研究生申请学位学术成果要求》执行。

其他说明:

无

2.11 信息安全学科博士研究生培养方案

一级学科名称		信息与通信工程	一级学科代码	0810			
	二级学科名称	信息安全	二级学科代码	0810Z1			
学科简介	信息安全是通信网络、计算机网络发展过程所必须关注的一个重要问题。本学科密切关注相关领域最新的发展动态,针对无线通信网、计算网络及复杂动态网络发展面临的安全威胁和不可靠因素,将通信领域、计算机领域和信息安全领域的理论、模型和技术有机结合起来,深入研究无线通信网、计算网络及复杂动态网络的智能和融合技术,安全和可靠性保障机制,关键技术及共性、个性技术。研究领域既涉及网络和信息安全的基础理论,又涉及通信系统和网络体系的基础技术,不但对于学科本身的发展具有重要的学术意义,而且对于提高未来通信与信息系统、计算机的有效性、可靠性和安全性具有重要的现实意义。研究领域内涵丰富,具挑战性,学术前瞻性和技术延展性强,对于培养我国急需的信息安全高级人才、推动我国国民经济的可持续发展具有重要的意义。本学科是一个新兴的学科,是"信息与通信工程"学科一个重要的二级学科。						
培养目标	然						
研究方向	3. 信息女生理化与技术4. 复杂动态网络与安全方						

学分设置与要求 (学位课不少于8学分)

	类 别		课程名称	学时	学分	开课 学期	备注
		V/ ++-3:III	中国马克思主义与当代	36	2		
		公共课	英语	48	2	1	
	学	基础课	应用泛函分析	40	2	1	一.华
课	位	李 仙床	数学模型	40	2	1	二选一
	课	专业课	现代信号处理	32	2	2	
			现代数字通信	32	2	2	三选一
程			网络与信息安全	32	2	2	
	非学位课	必修课	科技论文写作(英语)	40	2	1	
		少形床	主攻方向学术专注阅读		1	1~3	
		选修课	从博士研究生课程目录中选择	32	2		多选二
必	文献综述与开题报告				1		
修环	学术	活动 (5	次以上)		1		
	科研	实践			1		
节	教学	实践			1		

学位论文选题与开题要求:

学位论文选题应处于本学科前沿,具有开创性和重要理论意义。开题报告应在选题后获得 一定研究成果后进行。

申请学位的成果要求:

按《南京邮电大学研究生申请学位学术成果要求》执行。

其他说明:

发表论文应与学位论文主要研究工作相关或相近。

2.12 信息网络学科博士研究生培养方案

一级学科名称		信息与通信工程	一级学科代码	0810			
	二级学科名称	信息网络	二级学科代码	0810Z2			
学科简介	议、网络设备和通信软件的研究和实现,网络的管理、控制、优化,P2P(端到端)的通信技术及其管理,下一代通信网络 NGN 和下一代互联网 NGI 及 IPv6 技术及其实现,静态						
培养目标	掌握马克思主义的基本原理,热爱祖国,遵纪守法,品德优良,具有强烈的事业心和献身精神,积极为祖国的现代化建设事业服务。 具有严谨的治学态度和实事求是的工作作风,掌握本门学科领域坚实宽广的基础理论和系统深入的专门知识,具有独立从事科学研究工作和工程技术的能力,并且在科学或专门技术方面做出创造性成果。						
研究方向	3. 网络通信技术与多媒体技术 4. 基于通信网络的计算机软件技术						

学分设置与要求 (学位课不少于8学分)

	类 别		课程名称	学时	学分	开课 学期	备注
		V ++ ; III	中国马克思主义与当代	36	2	1	
		公共课	英语	48	2	1	
	学		数学模型	40	2	1	
课	位	•	排队论	40	2	2	三选一
	课		最优化理论应用	40	2	1	1
			现代数字通信	32	2	2	二选一
程			现代信息论	32	2	2	
	非	必修课	科技论文写作 (英语)	40	2	1	
	学位		主攻方向学术专注阅读		1	1~3	
	课	选修课	从博士研究生课程目录中选择		4		多选二
必	文献:	文献综述与开题报告			1		
修	学术	学术活动 (5次以上)			1		
环	科研	实践			1		
节	教学	实践			1		

学位论文选题与开题要求: 按学校要求执行。

申请学位的成果要求:

按《南京邮电大学研究生申请学位学术成果要求》执行。

其他说明:

无

2.13 信息获取与控制学科博士研究生培养方案

	一级学科名称	信息与通信工程	一级学科代码	0810			
	二级学科名称	信息获取与控制	二级学科代码	99J3			
学科简介	研究内容多有交叉。 本学科所属的一级学科为国家一级学科重点学科培育建设点和江苏省优势学科。						
培养目标	才。主要要求为: 掌 对国内外信号与信	制学科培养具有创新精神的 生握信息获取与控制领域坚实 息处理方面的新技术和发展 作、解决理论或实际问题的	实宽广的基础理论和系约 动向有透彻的了解,具	充深入的专业知识, 有独立从事本专业			
研究方向	1. 复杂网络与 2. 网络化控制 3. 机器人辅助	与信息物理系统					

学分设置与要求 (学位课不少于8学分)

	类 别		课程名称	学时	学分	开课 学期	备注
		V/ ++-3:III	中国马克思主义与当代	36	2	1	
		公共课	英语	48	2	1	
\m	学 位	基础课	从博士研究生课程目录数学类课程 中选择	40	2	1	多选一
课	课		现代信号处理	32	2	2	
		专业课	现代信息论	32	2	2	三选一
程			现代数字通信	32	2	2	
	非学位课	必修课	科技论文写作 (英语)	40	2	1	
			主攻方向学术专注阅读		1	1~3	
		选修课	从博士研究生课程目录中选择	32	2		多选二
必	文献综述与开题报告				1		
修	学术	学术活动 (5次以上)			1		
环	科研	实践			1		
节	教学	实践			1		

其他

学位论文选题与开题要求:

应选择本学科前沿领域或对我国经济和社会发展有重要意义的课题; 开题报告必须在至少由3名本学科和相关学科教授组成的专家论证会上通过; 开题报告完成一年以后方可申请学位论文答辩。

申请学位的成果要求:

按《南京邮电大学研究生申请学位学术成果要求》执行。

其他说明:

无

附录一 南京邮电大学研究生课程编号说明

南京邮电大学研究生课程编号长度为7位,第1位"1"代表硕士研究生课程,"2"代表博士研究生课程;前2位"10"代表学术型硕士研究生课程,"12"代表硕士专业学位研究生课程,"20"代表博士研究生课程;第3-4位代表课程类别;最后3位为课程序号。课程类别代号为:

学	术型研究生课程	专	业学位研究生课程
代号	课程类别	代号	课程类别
01	教育学	01	工程硕士•电子与通信工程
02	数学	02	工程硕士•计算机技术
03	光学与光学工程	03	工程硕士•软件工程
04	仪器仪表	04	工程硕士•光学工程
05	电子科学与技术	05	工程硕士•仪器仪表工程
06	信息与通信工程	06	工程硕士•集成电路工程
07	控制科学与工程	07	工程硕士•控制工程
08	计算机科学与技术	08	工程硕士•项目管理
09	经济管理	09	工程硕士•物流工程
10	光电材料	10	数学
11	公共	11	公共
		12	工程硕士•工业工程
		51	工商管理硕士
		61	工程管理硕士

附录二 南京邮电大学博士研究生课程总目录

类别	课程编号	课程名称	学时	学分	开课学期
	2002001	应用泛函分析	40	2	1
*****	2002002	最优化理论应用	40	2	1
数学类	2002003	数学模型	40	2	1
	2002004	排队论	40	2	2
	2003001	先进光纤通信系统	32	2	1
	2003002	高等光学	32	2	2
	2003003	光学信息原理与技术	32	2	2
	2003004	光子晶体理论与应用	32	2	2
	2003005	光子学导论	32	2	1
	2003006	微机电系统及其应用	32	2	2
	2003007	先进信息光子技术	32	2	2
光学工程类	2003008	微流控光学技术 (学术文献选读)	16	1	2
工子工 <u>任</u> 失	2003009	THz 器件技术(学术文献选读)	16	1	2
	2010001	高等物理化学	32	2	2
	2010002	光电子技术基础	32	2	2
	2010003	纳米技术导论	32	2	2
	2010004	光谱原理与应用	32	2	1
	2010005	生物电子学	32	2	2
	2010006	高等有机波谱分析	32	2	2
	2010007	纳米生物学	32	2	1
	2005001	计算电磁学	32	2	1
	2005002	无线通信中的电磁兼容性理论	32	2	2
	2005003	高等物理电子学	32	2	1
	2005004	电子科学与技术新进展	32	2	1
	2005005	纳米物理学	32	2	1
	2005006	光电子器件与组件	32	2	1
由乙利農士	2005007	射频/微波电路设计	32	2	2
电子科学与	2005008	薄膜物理	32	2	2
技术类	2005009	非线性光学	32	2	2
	2005010	太阳能电池与器件	32	2	2
	2005011	铁磁学	32	2	2
	2005012	微波电路	32	2	2
	2005013	微电子机械系统	32	2	2
	2005014	现代半导体器件物理	32	2	2
	2005015	现代光电子技术	32	2	1
信息与通信	2006001	现代数字通信	32	2	2
工程类	2006002	现代信息论	32	2	2

	2006005	现代信号处理	32	2	2
	2006006	复杂动态网络理论与应用	32	2	2
	2006007	网络管理与监控	32	2	2
	2006008	混沌通信	32	2	2
	2006009	网络与信息安全	32	2	2
计算机科学 与技术类	2008001	Service Oriented QoS Management from Theory to Practice	32	2	1
	2011002	博士英语	48	2	1
	2011003	科技论文写作(英语)	40	2	1
公共类	2011004	主攻方向学术专著阅读		2	1~3
	2011005	中国马克思主义与当代	36	2	1
	2011006	马克思主义经典著作选读			

附录三 南京邮电大学研究生申请学位学术成果要求

(经校第三届学位评定委员会第十二次会议审议通过)

为不断提高研究生培养质量,加强对研究生科研能力和创新能力的培养,对我校研究 生申请学位的学术成果做如下要求。本要求是我校研究生申请学位的基本要求,各学院、学 科可以在此基础上提出更高的要求。

一、申请博士学位成果要求

博士研究生申请博士学位论文答辩时,须在学术期刊(会议论文不计)上发表与博士学位论文相关的学术论文,论文收录必须符合下列条件之一:

- 1. 被 SCI 收录 1 篇和被 EI 收录 2 篇,其中至少 1 篇为用英语撰写的论文。
- 2. 被 SCI 收录 2篇, 其中至少 1篇为用英语撰写的论文。

申请学位论文答辩时,论文至少一篇发表并被 SCI 收录。申请博士学位时,条件 1 或条件 2 中的论文必须全部正式发表并收录。

列入统计范围的学术论文必须是博士生为第一作者。统计的论文必须以南京邮电大学 为第一署名单位。

二、申请硕士学位成果要求

学术型硕士研究生(包括以同等学力申请硕士学位者)申请硕士学位时须发表1篇与学位论文内容相关的学术论文,论文收录必须符合下列条件之一。

1. 学术刊物必须是下列最新版数据库所收录的期刊:

《南京邮电大学核心期刊目录》;

《中文核心期刊要目总览》;

《中国科学引文数据库来源期刊》;

《中文社会科学引文索引》:

«EI Compendex»;

《Web of Science》 - SCIE, SSCI, A&HCI;

- 2. 被 SCI、EI、ISTP 收录的会议论文;
- 3. 申请并受理发明专利 1 项,排名中的第一个研究生,相当于发表符合上述要求的学术论文 1 篇。

列入统计范围的学术论文必须是硕士研究生为第一作者,或导师为第一作者、硕士研究生本人为第二作者。统计的论文必须以南京邮电大学为第一署名单位。

三、确认办法

- 1. 博士研究生必须将在学期间发表的论文清单附在学位论文之后,并在申请答辩时将正式发表论文原件、复印件和收录证明交研究生院(筹)研究生学位与培养办审核,经认可后方可组织答辩。
- 2. 学术型硕士研究生必须将在学期间发表的论文清单附在学位论文之后,并在申请学位时,携发表论文原件、录用证明材料或专利申请受理通知书,到所在学院审核,经认可后方可组织答辩。

四、本规定自2012年入学的研究生开始实施,由研究生院学位与培养办公室负责解释。

数据库收录期刊查询

● 《南京邮电大学核心期刊目录》:

科技处网址: 科技处网站

研究生院网址:研究生院/学位工作/学术成果

- 《中文核心期刊要目总览》:研究生院/学位工作/学术成果
- 《中国科学引文数据库来源期刊》: http://sdb.csdl.ac.cn/cscd_source.jsp
- 《中文社会科学引文索引》: http://www.cssci.com.cn/index.html
- 《EI Compendex》: http://www.engineeringvillage.com/
- 《Web of Science》: http://webofknowledge.com 选 "web of science"

以上数据库也可通过中外文核心期刊查询系统进行查询,网址:

http://www.cceu.org.cn/demo/findcoreej.htm

或者通过我校图书馆提供的链接进行查询,网址:图书馆/中文数据库:图书馆/外文数据库