2012 年攻读硕士学位研究生入学考试北京市联合命题

无机化学试题

(请将答案写在答题纸上,写在试题上的答案无效)

一 选择题 (15分, 每题 1.5分	·)	
 欲增加Mg(OH)₂在水中的溶解 [A] 增大溶液pH值; [C] 加入0.1 mol•L⁻¹ MgSO₄; 	[B] 加入2.0 mol•L-1 N	IH ₄ Cl;
2. 下列物质中,哪一对物质可用 [A] NaCl-NaOH; [C] NH ₃ •H ₂ O-NH ₄ Cl;		
3. 在北方的冬天,下雪后通常料	 将粗盐撒在马路上帮助除	雪,是利用的以下哪
	[B] 沸点升高; [D] 溶剂化效应;	
4. pH=7.0 溶液的酸度是 pH=4.0 [A] 3; [B] 1/3;		[D] 1000;
5. 己知 AgS(s)的相对分子质量为	5×10^{-49}	,则在溶液中溶解的
$Ag_2S(s)$ 约为。 [A] $8.0 \times 10^{-17} g \cdot L^{-1}$; [C] $3.1 \times 10^{-17} g \cdot L^{-1}$;	[B] $8.0 \times 10^{-15} \text{g} \cdot \text{L}^{-1}$; [D] $3.1 \times 10^{-1} \text{g} \cdot \text{L}^{-1}$;	
6. 下列含氧酸中氧化性最强的是		
[A] H ₂ SO ₄ ; [C] H ₂ SO ₃ ;	[B] H ₂ S ₂ O ₃ ; [D] H ₂ S ₂ O ₇ ;	
7. 下列电对中, E^{Θ} 值最小的是_		
[A] AgI/Ag; [C] AgBr/Ag;	[B] AgCl/Ag; [D] Ag ⁺ /Ag;	
8. SnS 在下列哪种溶液中溶解_ [A] Na ₂ S; [B] NaOH;		[D] (NH ₄) ₂ S;
 9. 废弃的 CN⁻溶液不能倒入下列 [A] 含 Fe³⁺的废液中; [C] 含 Cu²⁺的酸性溶液中; 	[B] 含 Fe ²⁺ 的废液中;	中;
10. 下列各组离子中所有离子都 [A] Hg ²⁺ ,Ni ²⁺ ,Fe ²⁺ ;		

[C] Co^{2+} , Sb^{3+} , $Cr_2O_7^{2-}$; [D] Fe^{3+} , Cu^{2+} , MnO_4 ; 二 填空题 (30分,每空1分) 1. 实验室中, FeCl₃ 水溶液常显黄色,原因是_____, KMnO₄ 溶液总是 放在棕色瓶中,原因是______, Hg 滴洒落, 因其蒸汽有毒, 常撒上硫 粉,是因为 。 2. 对于反应 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$, $\Delta H^{\Theta} = -92 \text{ kJ-mol}^{-1}$,若升高温度(约 升高 100K),则 $v_{\mathbb{E}}$ _____, $v_{\mathbb{E}}$ _____, 平衡常数 K^{Θ} _____。(只要求 定性指出上述变化趋势,即增大,减小或不变) 3. 在配位化合物 K[PtCl₃(NH₃)]中,中心离子为____,配位体为____和___, 配位数为____,该配位化合物名称为_____。 4. 往 BaSO₄ 饱和溶液中加入 BaCl₂ 溶液,有____ 生成,这是因为 的 结果。若往 HAc 溶液中加入不含有相同离子的强电解质,则由于溶液中离子 浓度增大,使 H^{\dagger} 和 Ac^{-} 结合成HAc的机会_____,从而导致HAc的解离度____, 这种作用称为。 5. 对于 CO、HBr、H₂O 三种化合物,在它们各自的分子间作用力分布中,取 向力最大的是 ,最小的是 ;诱导力最大的是 ;色散力最大 的是____。 6. 在定性的棕色环实验中,可以鉴别 NO3和 NO2离子的存在。其原理是把 NO3⁻和 NO2⁻还原成___, 然后与___离子形成棕色的配离子。这两种酸根离子 的鉴别反应都必须在 介质中进行,其不同点在于鉴别 NOz离子在 介 质中进行,而鉴别 NO₃ 离子应该使用_____介质,因为_____。 7. 根据酸碱电子理论判断: 在反应 $KF + BF_3$ f $[BF_4]^- + K^+$ 中, 为路易 斯酸, 为路易斯碱。 8. 比较下列性质,用 ">"、 "<" 或 "=" 符号表示。 热稳定性: (1) AgOH_____AgNO₃; (2) BaCO₃ ____ CaCO₃。 三 简述题 (30分,每题6分) 1. 请用杂化轨道理论说明 CO 的成键情况。 2. 锂的标准电极电势是同族中最小的,但与水的反应却反而不如钠、钾剧烈, 试解释其原因。 3. 试分析主族元素分子型氢化物酸性的递变规律,并解释之。

5. 简述为什么 AIF₃ 的熔点高达 1563 K, 而 AICl₃ 的熔点却只有 463K?

4. 解释 TiCl₃和[Ti(O₂)OH(H₂O)₄]⁺有色的原因。

四 完成并配平下列反应方程式 (25分,每题2.5分)

- 1. $Na_2O_2 + CO_2 \rightarrow$
- 2. $Mn^{2+} + NaBiO_3 + H^+ \rightarrow$
- 3. $PBr_3 + H_2O \rightarrow$
- 4. Na₂SnS₃ +HCl \rightarrow
- 5. $BF_3 + Na_2CO_3 + \rightarrow$
- 6. $PdCl_2 + CO \rightarrow$
- 7. $Ag^{+} + H_{2}PO_{4}^{-} \rightarrow$
- 8. $CuSO_4 + KI \rightarrow$
- 9. PbS + $O_3 \rightarrow$
- 10. $P_4O_{10} + HNO_3 \rightarrow$

五 分离鉴别及推断题 (30分,第1小题18分,第2小题12分)

- 1. 现有一混合液, 其中包含 Cu²⁺, Al³⁺, Ag⁺和 Ba²⁺。请将它们分离, 并鉴别。
- 2. 现有淡绿色晶体,加水溶解,所得溶液可使兰色石蕊试纸变红,并能与 $BaCl_2$ 溶液生成不溶于酸的白色沉淀,将所得溶液进一步用硫酸酸化后,加少量于 $KMnO_4$ 溶液中, $KMnO_4$ 溶液的紫色褪去,再滴入淀粉-KI 溶液,发现溶液呈 兰色。另取此晶体配成的溶液少许,加盐酸酸化后,加少量 $K_3[Fe(CN)_6]$ 试剂,则有深兰色沉淀生成。问此绿色晶体是什么?并写出有关的反应方程式。

六 计算题 (20分,每小题10分)

1. N₂H₄和 H₂O₂的混合物可作为火箭燃料,它们的反应如下:

$$N_2H_4(g)+2H_2O_2(g) \to N_2(g)+4H_2O(g)$$

(1) 若已知 $N_2H_4(g)$ 的 $\Delta_f H_m^\Theta = 95.8 \text{kJgmol}^{-1}$,反应

 $H_2(g)+2H_2O_2(g)\to 2H_2O(g)$ 的 $\Delta_r H_m^\Theta=-348.6 \mathrm{kJgmol}^{-1}$, 求上述反应的 $\Delta_r H_m^\Theta$ 。

- (2) 已知 ΔH^{Θ} (H-H) = 436kJgmol⁻¹, ΔH^{Θ} (H-O) = 465kJgmol⁻¹,求 H₂O₂ 中 O–O 键的键能。
- 2. 硼砂(Na₂B₄O₇•10H₂O)在水中溶解,并发生如下的反应:

 $Na_2B_4O_7glOH_2O(s)$? $2Na^+(aq)+2B(OH)_3(aq)+2B(OH)_4^-(aq)+3H_2O(l)$ 硼酸与水的反应为: $B(OH)_3(aq)+2H_2O(l)f_-B(OH)_4^-+H_3O^+(aq)$

- (1) 将 28.6g 硼砂溶解在水中,配制 1.00 L 溶液,计算该溶液的 pH;
- (2) 在(1)的溶液中加入 100mL 的 $0.10 \text{ mol} \cdot L^{-1}HCl$ 溶液, 其 pH 又是多少?

(已知 Na₂B₄O₇•10H₂O 的相对分子量为 381.2, $K_{a,B(OH)_5}^{\Theta} = 5.8 \times 10^{-10}$)