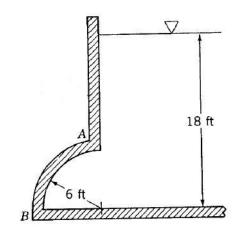
上 海 交 通 大 学 试 卷

(2008 至 2009 学年 第 2 学期)

班级号		_ 学号				姓名					
课程名称	船舶流体力学	力学					成绩				
	Г										
我承诺, 我将严	题号										
格遵守考试纪律。	得分										
承诺人:	批阅人(流水阅 卷教师签名处)										

一、 简答题


(每题 5 分, 共 25 分)

(1) 根据边界层理论,大雷诺数下物体均匀绕流流动的流场可以划分为几个区,分别是什么区,各区的流动有什么特点?

(2) 流体微团的运动形式有哪几种?写出它们的数学表达式。

		浅水波 长的关		散关系	〔为 ω	$^{2}=ghk^{2}$,	写出沒	浅水波波	速与波长	上的关系,	以及波周期
(4) 1	什么是	是流体	阻力?	理想	流体和制	钻性流体	本的流体	阻力有付	十么不同,	为什么?
(5)	写出	Euler	数的表	达式,	指出证	它的物理	里意义。			

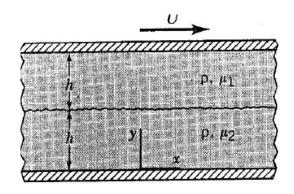
二、 用一个复杂柱形水桶盛水,水桶的前后柱长为4ft,柱形水桶的横截面形状和尺寸如图所示,水的比重为62.4 lb/ft³。求作用在四分之一圆柱AB上总的水压力大小。 (12分)

三、 一个三维不可压流体流动只给出了 x 和 y 方向的速度场: $u=6xy^2$, $v=-4y^2z$, 试确定 z 方向的速度场。 (12 分)

四、 一个二维不可压流体流动的速度势为: $\phi = x^3 - 3xy^2$ (12分)

- a) 求对应流动的流函数;
- b) 如果在原点(0,0)处,流函数值为0,求经过原定(0,0)的流线的斜率,并画出 这些流线。

五、平板边界层的速度剖面为:


(12分)

$$\begin{cases} \frac{u}{U} = \frac{4}{3} \left(\frac{y}{\delta} \right), & \text{when } 0 \le y < \frac{1}{2} \delta \\ \frac{u}{U} = \frac{1}{3} + \frac{2}{3} \left(\frac{y}{\delta} \right), & \text{when } \frac{1}{2} \delta \le y < \delta \\ \frac{u}{U} = 1, & \text{when } y \ge \delta \end{cases}$$

动力粘性系数为 μ ,用边界层动量积分方程 $\frac{\tau_{w}}{\rho U^{2}} = \frac{d\theta}{dx}$,求边界层厚度 δ 表达式。

六、 一个大直径圆管连接一个小直径圆管,流体从大直径圆管流入小直径圆管,会出现压力降。这个压力降 Δp 与大圆管的直径 D_1 、小圆管的直径 D_2 、流体在大直径圆管中的流速 V、流体密度 ρ 、以及动力粘性系数 μ 有关。试用 Π 定理描述压力降的关系式。 (12 分)

七、 如图所示,两块无限大平行平板之间是两层互不渗混的粘性不可压均质流体,上下两层流体的宽度都是 h,密度都是 ρ ,但动力粘性系数不同,上层为 μ_1 ,下层为 μ_2 。上面平板以速度 U 从左向右运动,下面平板固定不动。两块板之间的流体流动完全由上面平板运动产生,平板两端没有压力差。两块板之间的流体流动是定常层流流动,不考虑重力和体积力。试从 Navier-Stokes 方程出发,求两层流体交界面处的速度。 (15 分)

