删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

重庆邮电大学理学院导师教师师资介绍简介-朱伟

本站小编 Free考研考试/2021-10-06


朱伟,1976年生,博士,教授,博士生导师,中国科学院数学与系统科学研究院博士后,纽约大学、香港城市大学、北京大学访问****,重庆市英才计划创新创业领军人才(教育领域),重庆市学术技术带头人,重庆市巴渝********,重庆市高等学校优秀人才计划项目获得者,复杂系统智能分析与决策重庆市高校重点实验室主任,重庆市数学会副理事长,重庆市工业与应用数学会副理事长。美国《数学评论》(Mathematical Reviews)特约评论员。重庆邮电大学首届十佳优秀青年教师,重庆邮电大学系统理论及其应用研究中心主任,复杂系统理论分析与控制创新团队负责人。主要从事泛函微分方程、脉冲微分方程定性理论、复杂系统动态行为分析与控制研究。在IEEE Transactions on Neural Networks and Learning Systems、 IEEE Transactions on Automatic Control、 Automatica、 Science China Information Science等国际著名期刊上发表科研论文50余篇,其中SCI检索40余篇,ESI高被引论文7篇,热点论文1篇,Google Scholar引用2600余次,单篇最高引用395次。主持/承担国家自然科学基金5项,省部级人才计划2项,重庆市自然科学基金2项,教委教改项目2项(其中重大项目1项)。获重庆市科学技术奖(自然科学类)二等奖1项(排名1)、三等奖3项(分别排名2,3,4),获重庆市高等教学成果一、二等奖各1项(均排名4)。
1教育背景和工作经历
Ø 2018.02.02-2018.02.06香港城市大学,交流访问(合作导师:冯刚教授)
Ø 2015.01.6-2015.01.13,2015.02.02-2015.02.06北京大学工学院 智能控制实验室,交流访问(合作导师:王龙教授)
Ø 2014.02.13-2014.02.28香港城市大学,Senior Research Associate(合作导师:冯刚教授,刘璐博士)
Ø 2012.08.22-2013.08.23纽约大学工学院,Visiting Research Scholar(合作导师: 姜钟平教授)
Ø 2008.07-2010.07中国科学院数学与系统科学研究院,博士后(合作导师:程代展研究员)
Ø 2004.08-2007.06四川大学数学学院,应用数学,博士
Ø 2001.08-2004.07重庆邮电学院(现重庆邮电大学),控制理论与工程 硕士
Ø 1995.08-1999.07 四川大学数学学院 数学基地班 学士
2科研、教研项目
2.1科研项目
[1]国家自然科学基金,基于事件触发机制的多智能体系统脉冲一致性研究(No.**),2017.01-2020.12,项目负责人
[2]国家自然科学基金,脉冲时滞二阶多智能体系统的一致性分析与控制
(No.**),2011.01-2013.12,项目负责人
[3]重庆市留学人员创业创新支持计划,面向多智能体编队控制理论及应用研究(No.cx**),2018.01-2020.12,项目负责人
[4]国家自然科学基金,基于事件触发数字通信的多智能体系统分布式协同控
制与优化(No. **),2018.01-2021.12,排名第二
[5]国家自然科学基金,事件触发机制下随机多智能体系统的有限时间一致性研究(No.**),2016.01-2018.12,排名第二
[6]国家自然科学基金,逻辑动态系统的控制与优化(No.**) , 2011.01-2013.12,排名第二
[7]重庆市教育委员会,基于事件驱动的多智能体系统一致性研究,重庆市优秀人才计划项目(省部级人才计划),2014.06- 项目负责人
[8]重庆市自然科学基金,时滞切换系统的稳定性分析及在多自主体同步中
的应用(CSTC 2009BB2417),2009.07-2012.07 项目负责人
[9]重庆市自然科学基金基础与前沿研究项目,分数阶多智能体系统一致性理论研究(CSTC 2013jcyjA00026),2013.07-2016.12,项目负责人
[10]重庆邮电大学博士启动基金,脉冲泛函微分方程的定性分析及其在神经网络中的应用,2007.07-2010.07,项目负责人
2.2教研项目
[1]重庆市教委教改项目,以工为主的高校数学与应用数学专业人才培养方
案及模式的研究与实践(09-3-093),2009.09-2011.09项目负责人
[2]重庆邮电大学研究生教育创新计划重点项目,系统科学研究生培养模式
与师资团队建设,2011.10-2015.10,项目共同负责人
[3]重庆邮电大学教育教学改革项目,大学数学公共基础课分层教育的探索
与实践, 2015.09-2017.08,项目负责人
[4]重庆邮电大学研究生课程建设试点项目,理学院研究生课程建设改革与
实践,2015年6月至2018年5月,项目负责人
[5]重庆邮电大学重点课程建设项目,《数学建模与数学实验》,项目负责人
3主要获奖
3.1科研获奖
[1] 2016年度,面向仿生控制的系统动态复杂性理论及应用研究,重庆市自然科学二等奖(排名1),(2017.7)
[2] 2008年度,非线性系统复杂行为分析与控制,重庆市自然科学三等奖(排名4),(2009.2)
[3] 2009年度,不动点的部分问题研究及其应用,重庆市自然科学三等奖(排名2),(2010.4)
[4] 2011年度,脉冲时滞系统的定性分析与混合控制,重庆市自然科学三等奖(排名3),(2012.6)
[5] 2015年度,复杂系统中的数学基础理论研究,重庆邮电大学首届优秀科研成果一等奖(排名1)
3.2教研获奖
[1] 2008年度,构建平台,项目引导,强化学生工程实践与创新能力,重庆市高等教育教学成果 一等奖(排名4),(2009.2)
[2] 2008年度,探索大学数学与信息处理技术相融合的创新人才培养模式,重庆市高等教育教学成果 二等奖(排名4),(2009.2)
3.3指导学生课外科技活动获奖
[1] 2005年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖1项,二等奖2项
[2] 2006年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖0项,二等奖2项
[3] 2007年指导学生获全国数学建模竞赛全国二等奖2项,重庆市一等奖2项,二等奖1项
[4] 2007年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号
[5] 2008年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖2项,二等奖3项
[6] 2009年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖4项,二等奖3项
[7] 2010年指导学生获全国数学建模竞赛重庆市一等奖2项,二等奖3项
[8] 2010年重庆邮电大学优秀社团指导教师(数学俱乐部)
[9] 2011年指导学生获全国数学建模竞赛重庆市一等奖3项,二等奖2项
[10] 2012年指导学生获全国数学建模竞赛重庆市一等奖4项
[11] 2012年指导学生获美国数学建模竞赛Meritorious Winner 1项
[12] 2012年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号
[13] 2013年指导学生获美国数学建模竞赛Honorable Mention 2项
[14] 2013年指导学生获全国数学建模竞赛重庆市一等奖3项,二等奖3项
[15] 2014年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖2项,二等奖1项
[16] 2015年指导学生获美国数学建模竞赛Meritorious Winner 1项, Honorable Mention 1项
[17] 2015年指导学生获全国数学建模竞赛全国一等奖1项,重庆市二等奖5项
[18] 2015年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号
[19] 2016年指导学生获美国数学建模竞赛Honorable Mention 3项
[20] 2016年指导学生获全国数学建模竞赛全国二等奖2项,重庆市二等奖1项
[21] 2016年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号
[22] 2017年指导学生获美国数学建模竞赛Honorable Mention 2项
[23] 2017年指导学生获全国数学建模竞赛全国一等奖1项,重庆市一等奖1项,二等奖4项
[24] 2018年指导学生获美国数学建模竞赛Successful Participant 2项
[25] 2018年指导学生获全国数学建模竞赛重庆市一等奖1项,二等奖2项
4社会兼职
[1]重庆市数学会副理事长
[2]重庆邮电大学欧美同学会(留学人员联谊会)会长
[3]重庆市工业与应用数学学会副理事长
[4]重庆市欧美同学会(留学人员联谊会)常务理事
[5]重庆市运筹学会理事
5发表的主要科研论文
[1]Wei Zhu*, Dandan Wang, Lu Liu, Gang Feng, Event-based impulsive control of continuous- time dynamic systems and its application to synchronization of memristive neural networks, IEEE Transactions on Neural Networks and Learning Systems, 2018; 29(8):3599-3609
[2] WANG Dandan, ZHOU Qianghui,ZHU Wei*, Adaptive Event-Based Consensus of Multi-Agent Systems with General Linear Dynamics, J Syst Sci Complex (2018) 31: 120–129
[3]Wei Zhu*,Qianghui Zhou, Dandan Wang, Consensus of linear multi-agent systems via adaptive event-based protocols, Neurocomputing 318 (2018) 175–181
[4]Wei ZHU*, Qianghui ZHOU, Dandan WANG, Gang FENG, Fully distributed consensus of second-order multi-agent systems using adaptive event-based control,Science China Information Science, 2018, 61(12): 129201:1-3
[5] Qianghui Zhou, Dandan Wang,Wei ZHU*, Consensus of First-order Multi-agent Systems via Adaptive Event-Based Impulsive Control, Proceedings of the 37th Chinese Control Conference, July 25-27, 2018, Wuhan, China, pp. 6996-7000.
[6]Wei Zhu*, Huizhu Pu, Dandan Wang, Huaqing Li, Event-based consensus of second-order multi-agent systems with discrete time, Automatica, 79 (2017) 78-83(SCI: ES4NZ)
[7]Wei Zhu*, Huaqing Li and Zhong-Ping Jiang, Consensus of multi-agent systems with time-varying topology: An event-based dynamic feedback scheme, Int. J. Robust Nonlinear Control 2017; 27(8): 1339-1350 (SCI: ER4QV)
[8]Wei Zhu*,Bo Chen, Jie Yang, Consensus of fractional-order multi-agent systems with input time delay, Fractional Calculus & Applied Analysis, 20(1), 52-70, 2017( SCI:EL4HS)
[9]Wei Zhu*,Wenjing Li, Ping Zhou, Chunde Yang,Consensus of fractional-order multi-agent systems with linear models via observer-type protocol,Neurocomputing,2017,230:60–65( SCI:EK6UR)
[10]Wei Zhu*, Huizhu Pu, Qiuxuan Wu,Consensus of discrete-time linear multi-agent systems with event-based dynamic feedback scheme, IET Control Theory & Applications, 2017, Vol. 11 Iss. 15, pp. 2567-2572(SCI:FH6BQ)
[11] Chunde Yang,Wenjing Li, andWei Zhu*,Consensus Analysis of Fractional-Order Multiagent Systems with Double-Integrator, Discrete Dynamics in Nature and Society Volume 2017, Article ID **, 8 pages( SCI:EI6CI)
[12] Shiyun Shen, Wenjing Li, andWei Zhu*, Consensus of Fractional-Order Multiagent Systems with Double Integrator under Switching Topologies, Discrete Dynamics in Nature and Society, Volume 2017, Article ID **, 7 pages (SCI:FE8OL)
[13] Fenglan Sun, Lingxia Gao,Wei Zhu, Feng Liu, Generalized exponential input-to-state stability of nonlinear systems with time delay, Commun Nonlinear Sci Numer Simulat 44 (2017) :352–359 (SCI EA6MX)
[14] Fenglan Sun,Wei Zhu,Yongfu Li, Feng Liu, Finite-time consensus problem of multi-agent systems with disturbance, Journal of the Franklin Institute 353(2016) 2576–2587( SCI:DQ0AK)
[15] Huizhu Pu,Wei Zhu*,Dandan Wang, Consensus Analysis of First-order Discrete-time Multi-agent Systems with Time Delay: An Event-based Approach, Proceedings of the 35th Chinese Control Conference July 27-29, 2016, Chengdu, China, pp. 7979-7984
[16]Wei Zhu*and Zhongyuan Tian, Event-Based Consensus of First-Order Discrete Time Multi-Agent Systems, 2016 12th World Congress on Intelligent Control and Automation (WCICA),June 12-15, 2016, Guilin, China, pp 1692-1696
[17]Wei Zhu*,Zhong-Ping, Jiang, Event-Based Leader-following Consensus of Multi-agent Systems with Input Time Delay, IEEE Transactions on Automatic Control, 60(5): 1362-1367, 2015.(SCI:CG7TN)ESI高被引论文)
[18]Wei Zhu*,Zhong-Ping, Jiang, Gang Feng, Event-Based Consensus of Multi-agent Systems with General Linear Models, Automatica, 50(2): 552-558, 2014. (SCI: AC8WS)ESI高被引、热点论文)
[19]Wei Zhu*Daizhan Cheng,Leader-Following Consensus of Second-Order Agents with Multiple Time Varying Delays, Automatica, 46(12): 1994-1999, 2010. (SCI: 689KM)ESI高被引论文)
[20] Huaqing Li, Xiaofeng Liao, Tingwen Huang, andWei Zhu,Event-triggering Sampling Based Leader-following Consensus in Second-order Multi-agent Systems, IEEE Transactions on Automatic Control, 60(7), 2015:1998-2003. (SCI: CL3SR)ESI高被引论文)
[21] Huaqing Li, Xiaofeng Liao, Tingwen Huang,Wei Zhu,and Yanbing Liu, Second-Order Global Consensus in Multiagent Networks With Random Directional Link Failure, IEEE Transactions on Neural Networks and Learning Systems, 26(3): 565-575. 2015.(SCI:CE4XT)ESI高被引论文)
[22] Huaqing Li, Xiaofeng Liao, Xinyu Lei, Tingwen Huang, andWei Zhu,Second-Order Consensus Seeking in Multi-Agent Systems With Nonlinear Dynamics Over Random Switching Directed Networks,IEEE Transaction on Circuits and Systems-I: Regular Papers,60(6):1595-1607,2013.(SCI: 153MP)
[23]Wei Zhu*,Consensus of Multi-agent Systems with Switching Jointly Reachable Interconnection and Time Delays, IEEE Transactions on Systems, Man and Cybernetic, Part A, (Regular Paper), 42(2):348-358,2012.(SCI:895QZ)
[24]Wei Zhu*Consensus of Discrete Time Second-Order Multiagent Systems with Time Delay,Discrete Dynamics in Nature and Society,Volume 2012, Article ID 390691, 9 pages(SCI:060YN)
[25] Sun Feng-Lan andZhu Wei,Finite-time consensus for leader-following multi-agent systems over switching network topologies,Chin. Phys. B, 22(11), 110204, 2013. (SCI: 258UY)
[26] Fenglan Sun andWei Zhu,Finite-time consensus for heterogeneous multi-agent systems with mixed-order agents,International Journal of Systems Science, 46(11): 1961-1970,2015.(SCI:CG7UN)
[27] Ping Zhou,Wei Zhu,Function projective synchronization for fractional-order chaotic systems, Nonlinear Analysis: Real World Applications, 12 (2011) 811-816. (SCI: 689HQ)ESI高被引论文)
[28]Wei Zhu*Stability Analysis of Switched Impulsive Systems with Time Delays, Nonlinear Analysis: Hybrid Systems, 4 (2010) 608-617. (SCI:V22OX)
[29] Chunde Yang,Wei ZhuStability analysis of impulsive switched systems with time delays,Mathematical and Computer Modelling,50(2009) 1188-1194.(SCI:490AP)
[30] Yumei Huang,Wei ZhuDaoyi Xu,Invariant and attracting set of fuzzy cellular neural networks with variable delays,Applied Mathematics Letters, 22(2009) 478-483.(SCI:426AP)
[31]Wei Zhu*,Global exponential stability of impulsive reaction diffusion equation with variable delays,Applied Mathematics and Computation 205 (2008) 362-369。(SCI:367XM)
[32]Wei Zhu*,Invariant and Attracting Sets of Impulsive Delay Difference Equations with Continuous Variable, Computers and Mathematics with Applications, 55(2008)2732-2739.(SCI:309XM)
[33]Wei Zhu*,Daoyi Xu, Yumei Huang, Global impulsive exponential synchronization of time-delayed coupled chaotic systems, Chaos, Solitons and Fractals, 35(2008)904-912. (SCI:ID236)
[34]Wei Zhu*,A Sufficient Condition for Asymptotic Stability of Discrete Time Interval System with Delay, Discrete Dynamics in Nature and Society, Vol.2008, 7 pages. (SCI:332GD)
[35]Wei Zhu*,Daoyi Xu and Chunde Yang,Exponential stability of singularly perturbed impulsive delay differential equations,J. Math. Anal. Appl., 328 (2007)1161-1172.(SCI:131EJ)
[36] Shujun Long, Daoyi Xu andWei Zhu,Global Exponential Stability of Impulsive Dynamical Systems with Distributed Delays, Electronic Journal of Qualitative Theory of Differential Equations, 10(2007)1-13.(SCI:274QM)
[37]Wei Zhu*,Daoyi Xu and Zhichun Yang, Global exponential stability of impulsive delay difference equation, Applied Mathematics and Computation, 181(2006)65-72. (SCI:108ZB)
[38]Wei Zhu*,Daoyi Xu, Asymptotic Stability of Second-Order Discrete-Time Hopfield Neural Networks with Variable Delays, Lecture Notes in Computer Science, 3971(2006) 261-266. (SCI: BEM20)
[39] Daoyi Xu,Wei Zhuand Junshu Long, Global Exponential Stability of Impulsive Integro-differential Equation, Nonlinear Analysis, 64(2006) 2805-2816. (SCI:040JR)
[40]Wei Zhu*,MaoSen Wang, ChunDe Yang Leader-following Consensus of Fractional-Order Multi-agent Systems with General Linear Models,Proceeding of the 11th World Congress on Intelligent Control and Automation Shenyang, China, June 29 -July 4,2014:3491-3494. (EI: )
[41]ZHU Wei*,YAN Chao, Consensus Analysis of Second-Order Agents with Active Leader and Time Delay via Impulsive Control, Proceedings of the 30th Chinese Control Conference, July 22-24, 2011, Yantai, China, pp.4753-4757(EI: 201**)
[42] Ping Zhou,Wei ZhuA novel fractional-order hyperchaotic system and its synchronization, Advances in Differential Equations and Control Processes, 3(1)(2009)53-61.
[43]Wei Zhu*,Daoyi Xu, Global Exponential Stability of Fuzzy Cellular Neural Networks with Impulses and Infinite Delays, Journal of Mathematical Research and Exposition, 28(1)(2008)1-10.
[44]Wei Zhu*,Stability Analysis of Fuzzy Differential Equations with Delay, Annals of Differential Equations,23(2007) 603-607.
[45]Wei Zhu*,Zhaoyin Xiang and Zhiguo Yang, Mean Square Exponential Stability of Stochastic Vector Difference Equations with Variable Delays, J. Sichuan University,44(2007)495-498.
[46]郑继明,朱伟(通讯作者),二阶时滞微分方程的脉冲稳定化,四川大学学报(自然科学版),51(4):643-648,2014.
[47]朱伟,段文强,杨阳,沈建鑫,基于分数阶超混沌系统的图像加密算法及安全性分析,重庆邮电大学学报(自然科学版),24(4):501-506,2012.
[48]Wei Zhu*,Shiquan An, Exponential Stability of Stochastic Fuzzy Hopfield Neural Networks with Time-Varying Delays and Impulses, Applied Mathematical Sciences, 4(11): 537 - 550, 2010.
[49]Wei Zhu,Exponential Stability of Discrete-Time Cellular Neural Networks with Delays,重庆邮电大学学报(自然科学版),17(6):793-796,2005.
[50]朱伟,时变离散动态系统的渐近稳定性和几何速度稳定性,应用科学学报,22(2):252-254,2004.
[51]朱伟,杨晓松,线性离散动力系统的稳定性判定准则,应用科学学报,23(4):432-434,2005.


相关话题/介绍 师资