删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

重庆大学数学与统计学院导师教师师资介绍简介-周云华

本站小编 Free考研考试/2021-10-04


周云华? 个人主页
所在学系:数学系
职称:教授
邮箱:zhouyh@cqu.edu.cn
电话:



基本信息














博士,教授,博士生导师















教育背景














2005.09--2009.07北京大学,博士(基础数学)

2002.09--2005.07重庆大学,硕士(基础数学)

1996.09--2000.07重庆师范学院,学士(数学教育)















工作经历














2000.07--2002.08重庆邮电学院
2009.07--至今 重庆大学数学与统计学院
(期间:2011.09--2012.09密歇根州立大学访问****;2015.8—2015.12密歇根州立大学访问副教授;2020.05--2020.10 重庆市科学技术局)















研究方向














动力系统与遍历论















科研项目














主持:
1. 国家自然科学基金面上项目:部分双曲系统的拓扑与遍历论性质(2019.1-2022.12)
2. 国家自然科学基金面上项目:带双曲性动力系统的若干性质研究(2015.1-2018.12)
3. 国家自然科学基金青年项目:部分双曲系统的遍历性研究(2011.1-2013.12)
4.国家自然科学基金国际(地区)合作与交流项目:动力系统暑期研讨班(2018.7-2018.12)
5.国家自然科学基金国际(地区)合作与交流项目:实与复动力系统高级研讨班(2013.5-2013.11)
6.重庆市科技计划项目:弱双曲系统的动力学性质研究(2016.7-2019.6)
7.重庆市自然科学基金面上项目:保守系统的遍历逼近(2011.1-2013.12)
8. 中央高校基本科研业务费专项:部分双曲系统的动力学性质研究(2018.1-2019.12)















主讲课程














数学分析,高等数学,动力系统,实变函数,复变函数,测度论等















学术与社会兼职














美国数学会评论员















主要成果














1. Quasi-shadowing and limit quasi-shadowing for quasi-partially hyperbolic strings for flows. J. Differential Equations 269(2020), no.12, 11062-11085. (with Z. Li)
2. Unstable metric pressure of partially hyperbolic diffeomorphisms with sub-additive potentials, Nonlinearity, 33(2020) 6915-6934. (with W. Zhang and Z. Li)3. SRB measures for pointwise hyperbolic systems on open regions. Sci. China Math. 63(2020), no.9, 1671-1720. (with J. Chen and H. Hu)4. Quasi-shadowing for partially hyperbolic flows, Discrete Contin. Dyn. Syst.40(2020), no. 4, 2089-2103. (with Z. Li)
5. Sub-additive topological and measure-theoretictail pressures. Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 12,1617–1631. (with J. Peng)
6. On the limit quasi-shadowing property. DiscreteContin. Dyn. Syst. 37 (2017), no. 5, 2861–2879. (with F. Zhang)
7. On the tail pressure. Topol. Methods Nonlinear Anal. 47(2016), no. 2, 681–692.
8. Extreme entropy versusgrowth rates of periodic orbits in equivalent flows. Topology Appl. 202 (2016),151–159. (with W. Sun and C. Zhang)
9. Tail variational principle for a countable discrete amenablegroup action. J. Math. Anal. Appl. 433 (2016), no. 2, 1513–1530.
10. Non-zero Lyapunov exponents for some conservativepartially hyperbolic systems. Proc. Amer. Math. Soc. 143 (2015), no. 7,3147–3153.
11. Quasi-shadowing for partiallyhyperbolic diffeomorphisms. Ergodic Theory Dynam. Systems 35 (2015), no. 2,412–430. (with H. Hu and Y. Zhu)
12. Generic continuity of metric entropy forvolume-preserving diffeomorphisms. J. Math. Anal. Appl. 425 (2015), no. 1,364–371. (with J. Yang)
13. Robust weak ergodicity and stable ergodicity. ActaMath. Sci. Ser. B Engl. Ed. 33 (2013), no. 5, 1375–1381.
14. Distributional chaos for flows. Czechoslovak Math. J.63(138) (2013), no. 2, 475–480.
15. The local C1-density of stable ergodicity. DiscreteContin. Dyn. Syst. 33 (2013), no. 7, 2621–2629.
16. The ergodicity of a class of almost Anosov systems.Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 1, 193–198.
17. A property of Gibbs measures with almost additivepotentials. (Chinese) Acta Math. Sinica (Chin. Ser.) 55 (2012), no. 6,1027–1032.
18. Metric entropy of homeomorphism on non-compact metricspace. Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 1, 102–108.
19. Ergodicity of partially hyperbolic systems with centerbunching. (Chinese) Acta Math. Sinica (Chin. Ser.) 53 (2010), no. 1,51–54.
20. The Lyapunov exponents of C1 hyperbolicsystems. Sci. China Math. 53 (2010), no. 7, 1743–1752.(with W. Sun)
21. Topological entropies ofequivalent smooth flows. Trans. Amer. Math. Soc. 361 (2009), no. 6,3071–3082. (with W. Sun and T. Young)















研究生培养














博士:李治平,潘娟,吴楚鹏
硕士(学术):张芳,王丽娟,彭京兰,田柳,胡寒雨,李昊然,安敏,张梦杰


















相关话题/统计学院 数学