删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

面向Web的故事脉络挖掘研究综述

本站小编 Free考研考试/2022-01-02

摘要互联网时代,纷繁复杂的Web信息使得人们难以快速、准确地获得新闻事件的故事脉络。因此,如何从Web信息中自动挖掘社会事件的故事脉络(简称“故事脉络挖掘”)成为近年来Web数据挖掘领域的一个研究热点。故事脉络挖掘旨在通过分析新闻事件与后续关联事件间的相互关系,抽取事件的演化阶段,并进一步挖掘事件的演化模式。故事脉络挖掘可应用于网络新闻检索、文本摘要、舆情监测等众多应用场景,具有重要的研究价值。该文首先概述了故事脉络挖掘的定义、流程及主要任务,然后从故事脉络构建和事件演化分析两个方面详细介绍了目前故事脉络挖掘方向的主要进展,接着比较了两类数据集及其评测标准,最后给出了故事脉络挖掘领域未来的若干研究挑战和技术框架。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3214
相关话题/新闻 信息 技术 互联网 数据

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于案件要素指导及深度聚类的新闻与案件相关性分析
    摘要新闻与案件相关性分析是案件领域新闻舆情分析的基础,其可以转化为文本聚类问题。由于缺乏有效的监督信息,传统聚类方法易导致聚类发散,降低结果的准确性。针对案件和新闻文本的特点,该文提出了基于案件要素指导及深度聚类的新闻与案件相关性分析方法。该方法首先抽取出重要的句子表征文本;然后利用案件要素对案件进 ...
    本站小编 Free考研考试 2022-01-02
  • 面向垂直领域的阅读理解数据增强方法
    摘要阅读理解问答系统是利用语义理解等自然语言处理技术,根据输入问题,对非结构化文档数据进行分析,生成一个答案,具有很高的研究和应用价值。在垂直领域应用过程中,阅读理解问答数据标注成本高且用户问题表达复杂多样,使得阅读理解问答系统准确率低、鲁棒性差。针对这一问题,该文提出一种面向垂直领域的阅读理解问答 ...
    本站小编 Free考研考试 2022-01-02
  • 基于语言模型的预训练技术研究综述
    摘要预训练技术当前在自然语言处理领域占有举足轻重的位置。尤其近两年提出的ELMo、GTP、BERT、XLNet、T5、GTP-3等预训练模型的成功,进一步将预训练技术推向了研究高潮。该文从语言模型、特征抽取器、上下文表征、词表征四个方面对现存的主要预训练技术进行了分析和分类,并分析了当前自然语言处理 ...
    本站小编 Free考研考试 2022-01-02
  • NOBEL: 一种基于拓扑信息与监督学习的蛋白质复合物识别方法
    摘要蛋白质复合物对于生物学家有效了解细胞组织和功能具有重要意义,如何通过计算方法从蛋白质-蛋白质相互作用(PPI)网络中识别复合物是当前研究热点之一。然而,由于PPI网络中存在大量假阴性和假阳性噪声数据且现有已知蛋白质复合物并不完整,使得如何克服PPI网络的噪声问题,以及更好地利用已知蛋白质复合物, ...
    本站小编 Free考研考试 2022-01-02
  • 基于数据增强的高考阅读理解自动答题研究
    摘要机器阅读理解是自然语言处理领域中的一项重要研究任务,高考阅读理解自动答题是近年来阅读理解任务中的又一挑战。目前高考语文阅读理解任务中真题和模拟题的数量相对较少,基于深度学习的方法受到实验数据规模较小的限制,所得的实验结果相比传统方法无明显优势。基于此,该文探索了面向高考语文阅读理解的数据增强方法 ...
    本站小编 Free考研考试 2022-01-02
  • 文本对抗样本攻击与防御技术综述
    摘要对抗样本攻击与防御是最近几年兴起的一个研究热点,攻击者通过微小的修改生成对抗样本来使深度神经网络预测出错。生成的对抗样本可以揭示神经网络的脆弱性,并可以修复这些脆弱的神经网络以提高模型的安全性和鲁棒性。对抗样本的攻击对象可以分为图像和文本两种,大部分研究方法和成果都针对图像领域,由于文本与图像本 ...
    本站小编 Free考研考试 2022-01-02
  • 面向对话的融入交互信息的实体关系抽取
    摘要实体关系抽取旨在从文本中抽取出实体之间的语义关系,是自然语言处理的一项基本任务。在新闻报道、维基百科等规范文本上,该任务的研究相对丰富且已取得了一定的效果,但面向对话文本的相关研究还处于起始阶段。相较于规范文本,对话是一个交互的过程,大量信息隐藏在交互中,这使得面向对话文本的实体关系抽取更具挑战 ...
    本站小编 Free考研考试 2022-01-02
  • 基于时空注意力的社交网络信息级联预测模型
    摘要针对目前信息级联预测模型的构建多基于级联的时序信息或者空间拓扑结构、极少考虑两者的结合问题,该文提出一种面向社交网络的基于深度学习方法的信息级联预测(InformationCascadePrediction,ICP)模型。首先,使用拉普拉斯矩阵对级联节点采样,生成空间序列;然后,通过结合了图卷积 ...
    本站小编 Free考研考试 2022-01-02
  • 融合知识图谱的NBA赛事新闻的自动写作
    摘要针对文字直播自动摘要的新闻稿存在背景信息缺乏、难以引起读者兴趣等不足,该文提出一种NBA赛事新闻的自动生成方法。采用该文提出的关键事件抽取算法从文字直播数据中抽取事件点、匹配突出关键事件的模板来生成新闻初稿,再从构建的NBA赛事知识图谱中提取背景信息和描述重点,自动生成最终的新闻稿。该文构建并公 ...
    本站小编 Free考研考试 2022-01-02
  • 基于文章和近答案句信息的问题生成模型
    摘要自动问题生成任务旨在给文章中的一段文本生成相应的自然语言的问句,该研究在问答系统和语音助手的对话系统中有重要作用,可以帮助它们启动对话和继续对话。目前的神经网络问题生成模型主要是将包含答案的句子或者整篇文章作为模型的输入,而这些方法存在语义表示不能很好地结合句子和文章信息的问题。因此该文提出多输 ...
    本站小编 Free考研考试 2022-01-02