摘要因短文本实体消歧具有不能完整地表达语义关系、上下文提供的信息较少等局限性。针对以上难点,该文提出了一种新的方法,混合卷积网络(Mixed Convolution Network,MCN)。该方法的核心思想是首先对数据集进行预处理;其次,采用Google提出的BERT模型进行特征提取,并通过注意力机制将特征进一步抽取后作为CNN模型的输入,通过CNN模型获得句子的依赖特征。同时,该文使用GCN模型获取语义特征,将二者提取到的语义信息融合,输出得到结果。在CCKS2019评测数据集上的实验结果表明,该文提出的混合卷积网络取得了86.57%的精确率,验证了该模型的有效性。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3222
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于混合卷积网络的短文本实体消歧
本站小编 Free考研考试/2022-01-02
相关话题/数据 信息 网络 实验 模型
面向垂直领域的阅读理解数据增强方法
摘要阅读理解问答系统是利用语义理解等自然语言处理技术,根据输入问题,对非结构化文档数据进行分析,生成一个答案,具有很高的研究和应用价值。在垂直领域应用过程中,阅读理解问答数据标注成本高且用户问题表达复杂多样,使得阅读理解问答系统准确率低、鲁棒性差。针对这一问题,该文提出一种面向垂直领域的阅读理解问答 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于多头注意力和BiLSTM改进DAM模型的中文问答匹配方法
摘要针对目前检索式多轮对话深度注意力机制模型(DeepAttentionMatchingNetwork,DAM)候选回复细节不匹配和语义混淆的问题,该文提出基于多头注意力和双向长短时记忆网络(BiLSTM)改进DAM模型的中文问答匹配方法,采用多头注意力机制,使模型有能力建模较长的多轮对话,更好地处 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于图注意力卷积神经网络的文档级关系抽取
摘要关系抽取作为信息抽取的子任务,旨在从非结构化文本中抽取出便于处理的结构化知识,对于自动问答、知识图谱构建等下游任务至关重要。该文在文档级的关系抽取语料上开展工作,包括但不局限于传统的句子级关系抽取。为了解决文档级关系抽取中长距离依赖问题,并且对特征贡献度加以区分,该文将图卷积模型和多头注意力机制 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于混合神经网络的实体关系抽取方法研究
摘要实体关系抽取是信息抽取领域的重要研究内容,对知识库的自动构建起着至关重要的作用。针对非结构化文本实体关系抽取存在上下文环境信息难以准确表征,致使现有抽取模型准确率不能满足实际应用需求的问题,该文提出了一种新型的实体关系抽取模型BiGRU-Att-PCNN。该模型是基于混合神经网络,首先,构建双向 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于增强的双向树表示的推特谣言立场检测模型
摘要谣言立场检测任务是通过分析社交媒体平台上用户发表的评论,判别他们对谣言所持的立场是支持、反对或其他。谣言立场检测有助于甄别谣言真假。现有的工作将社交对话数据建模为单向树结构,仅考虑了对话树的局部语义和结构信息。针对这些不足,该文提出了一种增强的双向树神经网络模型。首先,设计了一种门控机制,用于融 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于语言模型的预训练技术研究综述
摘要预训练技术当前在自然语言处理领域占有举足轻重的位置。尤其近两年提出的ELMo、GTP、BERT、XLNet、T5、GTP-3等预训练模型的成功,进一步将预训练技术推向了研究高潮。该文从语言模型、特征抽取器、上下文表征、词表征四个方面对现存的主要预训练技术进行了分析和分类,并分析了当前自然语言处理 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02NOBEL: 一种基于拓扑信息与监督学习的蛋白质复合物识别方法
摘要蛋白质复合物对于生物学家有效了解细胞组织和功能具有重要意义,如何通过计算方法从蛋白质-蛋白质相互作用(PPI)网络中识别复合物是当前研究热点之一。然而,由于PPI网络中存在大量假阴性和假阳性噪声数据且现有已知蛋白质复合物并不完整,使得如何克服PPI网络的噪声问题,以及更好地利用已知蛋白质复合物, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于数据增强的高考阅读理解自动答题研究
摘要机器阅读理解是自然语言处理领域中的一项重要研究任务,高考阅读理解自动答题是近年来阅读理解任务中的又一挑战。目前高考语文阅读理解任务中真题和模拟题的数量相对较少,基于深度学习的方法受到实验数据规模较小的限制,所得的实验结果相比传统方法无明显优势。基于此,该文探索了面向高考语文阅读理解的数据增强方法 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02SCT-CVAE: 基于分离Context机制与CVAE的Transformer对话模型
摘要现有多轮对话生成的Encoder-Decoder模型容易产生单一的响应,虽然使用条件自动编码器(CVAE)可以有效改善响应的多样性问题,但是基于CVAE的模型大多不能够捕捉上下文中较长的依赖。同时,现有的模型也无法显式处理上下文话语和源语句之间的差异。该文将Transformer与CVAE结合, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于图卷积神经网络的隐式篇章关系识别
摘要隐式篇章关系识别是篇章关系识别的子任务,其挑战性在于难以学习到具有丰富语义信息和交互信息的论元表示。针对这一难点,该文提出一种基于图卷积神经网络(GraphConvolutionalNetwork,GCN)的隐式篇章关系分类方法。该方法采用预训练语言模型BERT(BidirectionalEnc ...中科院软件研究所 本站小编 Free考研考试 2022-01-02