删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于重解码的神经机器翻译方法研究

本站小编 Free考研考试/2022-01-02

摘要基于Transformer的序列转换模型是当前性能最优的机器翻译模型之一。该模型在生成机器译文时,通常从左到右逐个生成目标词,这使得当前位置词的生成不能利用译文中该词之后未生成词的信息,导致机器译文解码不充分从而降低译文质量。为了缓解上述问题,该文提出了基于重解码的神经机器翻译模型,该模型将已生成的机器译文作为目标语言近似上下文环境,对译文中每个词依次进行重解码,重解码时Transformer 解码器中遮挡多头注意力仅遮挡已生成译文中的当前位置词,因此,重生成的每个词都能充分利用目标语言的上下文信息。在多个WMT机器翻译评测任务测试集上的实验结果表明: 使用基于重解码的神经机器翻译方法显著提高了机器译文质量。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3145
相关话题/质量 神经 信息 语言 环境

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 译文质量估计中基于Transformer的联合神经网络模型
    摘要译文质量估计作为机器翻译中的一项重要任务,在机器翻译的发展和应用中发挥着重要的作用。该文提出了一种简单有效的基于Transformer的联合模型用于译文质量估计。该模型由Transformer瓶颈层和双向长短时记忆网络组成,Transformer瓶颈层参数利用双语平行语料进行初步优化,模型所有参 ...
    本站小编 Free考研考试 2022-01-02
  • 基于ECPA神经网络的情绪原因识别方法
    摘要情绪原因识别是文本情绪分析领域中的一个前沿研究方向。传统情绪原因识别方法需要进行规则制定、抽取特征,而该文从情绪原因的语言特点出发,结合Bi-LSTM模型和注意力机制,提出一种基于情绪上下文位置注意力神经网络的情绪原因识别方法(ECPA)。该方法考虑了情绪词和情绪类别中的情绪信息,学习了Bi-L ...
    本站小编 Free考研考试 2022-01-02
  • 基于图神经网络和语义知识的自然语言推理任务研究
    摘要自然语言推理任务的目的是推断两个句子之间的语义逻辑关系。该文通过模仿人类的推理过程构造模型,首先利用长短时记忆网络提取词的语境特征,模仿人类粗读句子的过程;然后依据外部语义知识,连接两个句子中有语义联系的词,构造一个以词为节点的语义图;接下来模仿人类比较两个句子的语义角色相似性的思维,用图卷积或 ...
    本站小编 Free考研考试 2022-01-02
  • CPLM-CSC:基于单字级别预训练语言模型的中文错别字纠正方法
    摘要由于汉语语义表达的多样性和复杂性,中文错别字自动纠正目前存在很多挑战。现有的错别字纠正算法的性能普遍不够理想,而且需要大量高质量的语料进行训练。该文提出一种基于预训练语言模型的错别字纠正方法CPLM-CSC,能够显著地提高纠错性能。CPLM-CSC采用基于单字级别预训练语言模型来进行错别字检测, ...
    本站小编 Free考研考试 2022-01-02
  • 人脑如何学习新的语言规则
    摘要成人大脑究竟能否掌握新的语言规则,是语言学习研究领域一直存在争议的问题。习得年龄、输入量和相似性,哪个才是影响语言规则学习的重要因素?学界始终没有统一的结论。该文以成年汉语母语者为研究对象,基于小数据的人工语法学习(artificialgrammarlearning,AGL)范式设计实验,采用跟 ...
    本站小编 Free考研考试 2022-01-02
  • 聚合邻域信息的联合知识表示模型
    摘要知识表示学习在关系抽取、自动问答等自然语言处理任务中获得了广泛关注,该技术旨在将知识库中的实体与关系表示为稠密低维实值向量。然而,已有的模型在建模知识库中的三元组时,或是忽略三元组的邻域信息,导致无法处理关联知识较少的罕见实体,或是在引入邻域信息时不能自适应地为每个实体抽取最相关的邻节点属性,导 ...
    本站小编 Free考研考试 2022-01-02
  • 基于字符卷积神经网络的生物医学变异实体识别方法
    摘要从海量生物医学文献中挖掘变异信息对生物医学复杂疾病研究具有重要意义。在当前的变异实体识别方法中,基于条件随机场模型的方法取得了不错效果并成为主流方法,但存在需要大量特征工程来提升模型性能的缺点。针对此问题,该文提出一种基于字符卷积神经网络的变异实体识别方法CharCNN-CNN-CRF。该方法首 ...
    本站小编 Free考研考试 2022-01-02
  • 融合注意力LSTM的神经张量分解推荐模型
    摘要针对结合深度学习模型的协同过滤算法未考虑关联数据的多维交互随时间动态变化的问题,该文提出一种融合时间交互学习和注意力长短期记忆网络的张量分解推荐模型(LA-NTF)。通过采用基于注意力机制的长短期记忆网络从项目文本信息中提取项目的潜在向量,然后使用融合注意力机制的长短期记忆网络来表征用户—项目关 ...
    本站小编 Free考研考试 2022-01-02
  • 融合卷积神经网络与双向GRU的文本情感分析胶囊模型
    摘要文本情感分析是自然语言处理领域一个重要的分支。现有深度学习方法不能更为全面地提取文本情感特征,且严重依赖于大量的语言知识和情感资源,需要将这些特有的情感信息充分利用使模型达到最佳性能。该文提出了一种融合卷积神经网络与双向GRU网络的文本情感分析胶囊模型。该模型首先使用多头注意力学习单词间的依赖关 ...
    本站小编 Free考研考试 2022-01-02
  • 基于深层语言模型的古汉语知识表示及自动断句研究
    摘要古文句读不仅需要考虑当前文本的语义和语境信息,还需要综合历史文化常识,对专家知识有较高要求。该文提出了一种基于深层语言模型(BERT)的古汉语知识表示方法,并在此基础上通过条件随机场和卷积神经网络实现了高精度的自动断句模型。在诗、词和古文三种文体上,模型断句F1值分别达到99%、95%和92%以 ...
    本站小编 Free考研考试 2022-01-02