删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于依存关系的命名实体识别

本站小编 Free考研考试/2022-01-02

摘要现有的命名实体识别方法主要是将句子看作一个序列进行处理,忽略了句子中潜在的句法信息,存在长距离依赖问题。为此,该文提出一种基于依存关系的命名实体识别模型,通过在输入数据中增加依存树信息,改变双向长短时记忆网络的层间传播方式,以获得单词在依存树中的子节点和父节点信息,并通过注意力机制动态选择两者的特征,最后将特征输入到CRF层实现命名实体标注。实验表明,该方法较BiLSTM-CRF模型在性能上得到了提高,且在长实体识别上优势明显。在OntoNotes 5.0 English和OntoNotes 5.0 Chinese以及SemEval-2010 Task 1 Spanish上的F1值分别达到了88.94%、77.42%、84.38%。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3148
相关话题/信息 网络 实验 数据 序列

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于ECPA神经网络的情绪原因识别方法
    摘要情绪原因识别是文本情绪分析领域中的一个前沿研究方向。传统情绪原因识别方法需要进行规则制定、抽取特征,而该文从情绪原因的语言特点出发,结合Bi-LSTM模型和注意力机制,提出一种基于情绪上下文位置注意力神经网络的情绪原因识别方法(ECPA)。该方法考虑了情绪词和情绪类别中的情绪信息,学习了Bi-L ...
    本站小编 Free考研考试 2022-01-02
  • BSLRel:基于二元序列标注的级联关系三元组抽取模型
    摘要关系三元组抽取是构建大规模知识图谱的基础,近年来受到学术界和工业界的广泛关注。为了提高模型对重叠关系三元组和多槽值关系三元组的抽取能力,该文提出了一个基于神经网络的端到端的关系三元组抽取模型BSLRel。其主要特点是将关系三元组抽取任务转化为级联的二元序列标注任务,并使用多信息融合结构Condi ...
    本站小编 Free考研考试 2022-01-02
  • 基于图神经网络和语义知识的自然语言推理任务研究
    摘要自然语言推理任务的目的是推断两个句子之间的语义逻辑关系。该文通过模仿人类的推理过程构造模型,首先利用长短时记忆网络提取词的语境特征,模仿人类粗读句子的过程;然后依据外部语义知识,连接两个句子中有语义联系的词,构造一个以词为节点的语义图;接下来模仿人类比较两个句子的语义角色相似性的思维,用图卷积或 ...
    本站小编 Free考研考试 2022-01-02
  • 基于网络结构的增强社会群体凝聚力策略研究
    摘要目前社会群体研究主要集中在将群体划分为多个社区。然而,在一个群体中,通常希望所有的成员团结一致,形成一个具有凝聚力的群体,这对社会群体的合作以及社会习俗形成等相关研究具有广泛意义。因此理解社会凝聚力与社会群体的动态行为之间的关系显得十分重要。该文在合作博弈的基础上,建立了社会群体动态行为模型。基 ...
    本站小编 Free考研考试 2022-01-02
  • 基于贝叶斯网络的实体属性补全
    摘要属性是实体的重要组成部分,因此实体属性的获取是知识图谱构建的关键步骤。由哈尔滨工业大学社会计算与信息检索研究中心推出的开放域中文知识图谱《大词林》是通过从文本中自动挖掘实体及实体间的关系构建而成的,因此为《大词林》中缺少属性的实体添加属性也成为必须研究的问题之一。该文提出了一种解决方案:基于贝叶 ...
    本站小编 Free考研考试 2022-01-02
  • 聚合邻域信息的联合知识表示模型
    摘要知识表示学习在关系抽取、自动问答等自然语言处理任务中获得了广泛关注,该技术旨在将知识库中的实体与关系表示为稠密低维实值向量。然而,已有的模型在建模知识库中的三元组时,或是忽略三元组的邻域信息,导致无法处理关联知识较少的罕见实体,或是在引入邻域信息时不能自适应地为每个实体抽取最相关的邻节点属性,导 ...
    本站小编 Free考研考试 2022-01-02
  • 基于字符卷积神经网络的生物医学变异实体识别方法
    摘要从海量生物医学文献中挖掘变异信息对生物医学复杂疾病研究具有重要意义。在当前的变异实体识别方法中,基于条件随机场模型的方法取得了不错效果并成为主流方法,但存在需要大量特征工程来提升模型性能的缺点。针对此问题,该文提出一种基于字符卷积神经网络的变异实体识别方法CharCNN-CNN-CRF。该方法首 ...
    本站小编 Free考研考试 2022-01-02
  • 融合卷积神经网络与双向GRU的文本情感分析胶囊模型
    摘要文本情感分析是自然语言处理领域一个重要的分支。现有深度学习方法不能更为全面地提取文本情感特征,且严重依赖于大量的语言知识和情感资源,需要将这些特有的情感信息充分利用使模型达到最佳性能。该文提出了一种融合卷积神经网络与双向GRU网络的文本情感分析胶囊模型。该模型首先使用多头注意力学习单词间的依赖关 ...
    本站小编 Free考研考试 2022-01-02
  • 基于部分标签数据和经验分布的命名实体识别
    摘要近年来,基于数据驱动的命名实体识别方法在新闻、生物医疗等领域上取得了很大的成功,然而许多领域缺少标签,且人工标注成本高昂。为了降低标注成本,该文尝试使用含有噪声的部分标签数据进行命名实体识别,提出了一种基于部分标签数据和经验分布的方法。首先介绍基于部分标签数据的建模方法,然后引入标签经验分布的假 ...
    本站小编 Free考研考试 2022-01-02
  • 融合粗细粒度信息的长答案选择神经网络模型
    摘要答案选择是问答系统中的关键技术之一,而长答案选择在社区问答系统、开放域问答系统等非实体问答系统中有着重要地位。该文提出了一个结合粗粒度(句子级别)和细粒度(单词或n元单词级)信息的模型,缓解了传统句子建模方式应用于长答案选择时不能把握住句子的全部重要信息的不足和使用比较-聚合框架处理该类问题时不 ...
    本站小编 Free考研考试 2022-01-02