摘要文本阅读难度自动分级是让计算机能够根据文本特征自动判断文本所属的难度级别,该文以此为目标,提出一种基于多元语言特征与深度特征相融合的方法来实现对文本难度的自动分级。其中多元语言特征考虑了汉字、词汇、句子等不同的语言层面,同时涉及到频率、长度、复杂度、丰富度、连贯度等不同维度的信息。另一方面,该文利用了基于BERT的神经网络预训练模型来提取文本中句子的深度特征,在此基础上构建了一个端到端神经网络来将语言特征与深度特征进行融合,最终在自动分级任务上取得了不错的效果,分级正确率超过了基于传统语言特征的方法和基于主流神经网络的方法,充分表明了所提出的特征融合方法在文本阅读难度自动分级任务上的有效性。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2936
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于多元语言特征与深度特征融合的中文文本阅读难度自动分级研究
本站小编 Free考研考试/2022-01-02
相关话题/语言 阅读 计算机 信息 特征
跨语言词向量研究综述
摘要随着人们对互联网多语言信息需求的日益增长,跨语言词向量已成为一项重要的基础工具,并成功应用到机器翻译、信息检索、文本情感分析等自然语言处理领域。跨语言词向量是单语词向量的一种自然扩展,词的跨语言表示通过将不同的语言映射到一个共享的低维向量空间,在不同语言间进行知识转移,从而在多语言环境下对词义进 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02结合预训练模型和语言知识库的文本匹配方法
摘要针对文本匹配任务,该文提出一种大规模预训练模型融合外部语言知识库的方法。该方法在大规模预训练模型的基础上,通过生成基于WordNet的同义—反义词汇知识学习任务和词组—搭配知识学习任务引入外部语言学知识。进而,与MT-DNN多任务学习模型进行联合训练,以进一步提高模型性能。最后利用文本匹配标注数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于语言特征自动获取的反问句识别方法
摘要反问句是以疑问的形式表达强烈情感的修辞方式,对其有效识别可为自然语言处理中的情感分析任务提供技术支持。该文提出了一种基于语言特征自动获取的反问句识别方法。首先,利用标签注意机制,建立了一个数据驱动的特征抽取模型,用于获取与任务相关的词汇、句法结构、符号标记和话题等语言特征。其次,利用Bi-LST ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融入丰富信息的高性能神经实体链接
摘要歧义的存在使得实体链接任务需要大量信息的支撑。已有研究主要使用两类信息,即实体表述所在的文本信息和外部的知识库信息。但已有研究对信息的使用存在以下两个问题:首先,最新通用知识库规模更大、覆盖面更广,但目前的实体链接模型却未从中受益,其性能没有得到相应提升;其次,表述所在的文本信息既包含表述所处的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合单语语言模型的藏汉机器翻译方法研究
摘要由于藏汉平行语料匮乏,导致藏汉神经网络机器翻译效果欠佳,该文提出了一种将藏语单语语言模型融合到藏汉神经网络机器翻译的方法,首先利用神经网络实现藏语单语语言模型,然后使用Transformer实现藏汉神经网络机器翻译模型,最后将藏语单语语言模型融合到藏汉神经网络机器翻译中。实验表明,该方法能显著提 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02先秦诸家学派的相关系数与特征词研究
摘要为了发现先秦诸家学派之间的相关度,找出能够代表各学派主题特征的特征词,该文首次对诸家学派之间的相关关系作量化考察,对诸家思想的主题特征作统计分析。通过研究发现,儒家与道家之间的相关度最高,兵家与墨家之间的相关度最低,道家与其他各学派之间的相关系数的均值最大。该文还通过分析特定学派中各个词型与其他 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合词结构特征的多任务老挝语词性标注方法
摘要目前,老挝语词性标注研究处于初期,可用标注语料有限,且老挝语吸收了多种外来词,导致标注语料库存在大量稀疏词。多任务学习是有效识别稀疏词的一种方法,该文研究了老挝词的结构特征,并构建了结合词性标注损失和主辅音辅助损失的多任务老挝语词性标注模型。老挝词有很多词缀可以表达词性信息,因此模型还采用了字符 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于生成对抗模型的异质信息网络语义表征方法研究
摘要近些年,网络表示学习问题吸引了大量研究者的关注,而异构信息网络由于其丰富的结构语义信息及其广阔的应用领域,更是成为了网络表示学习领域的重中之重。目前面向异构信息网络的表示学习模型主要可以分为基于生成式模型的表示学习方法和基于判别式模型的表示学习方法,但是很少有工作同时结合两种模型进行表示学习的优 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02TransRD: 一种不对等特征的知识图谱嵌入表示模型
摘要知识图谱嵌入是一种将实体和关系映射到低维向量空间的技术。目前已有的嵌入表示方法在对具有不对等特征的知识图谱中的实体和关系建模时存在两大缺陷:一是假定头尾实体来自同一语义空间,忽略二者在链接结构和数量上的不对等;二是每个关系单独配置一个投影矩阵,忽略关系之间的内在联系,导致知识共享困难,泛化能力差 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融入多特征的汉越新闻观点句抽取方法
摘要该文提出一种融入多特征的汉越双语新闻观点句抽取方法。首先针对汉语和越南语标记资源不平衡的问题,构建了汉越双语词嵌入模型,用丰富的中文标记资源来弥补越南语标记资源的缺失。并且该文认为句子的主题特征、位置特征和情感特征对观点句分类具有重要作用,因此将这些特征分别融入词向量和注意力机制中,实现句子语义 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02