删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于多通道特征和自注意力的情感分类方法

本站小编 Free考研考试/2022-01-02

摘要:针对情感分析任务中没有充分利用现有的语言知识和情感资源,以及在序列模型中存在的问题:模型会将输入文本序列解码为某一个特定的长度向量,如果向量的长度设定过短,会造成输入文本信息丢失.提出了一种基于多通道特征和自注意力的双向LSTM情感分类方法(MFSA-BiLSTM),该模型对情感分析任务中现有的语言知识和情感资源进行建模,形成不同的特征通道,并使用自注意力重点关注加强这些情感信息.MFSA-BiLSTM可以充分挖掘句子中的情感目标词和情感极性词之间的关系,且不依赖人工整理的情感词典.另外,在MFSA-BiLSTM模型的基础上,针对文档级文本分类任务提出了MFSA-BiLSTM-D模型.该模型先训练得到文档的所有的句子表达,再得到整个文档表示.最后,对5个基线数据集进行了实验验证.结果表明:在大多数情况下,MFSA-BiLSTM和MFSA-BiLSTM-D这两个模型在分类精度上优于其他先进的文本分类方法.



Abstract:The purpose of this study is for the problem that the existing language knowledge and emotion resources are not fully utilized in the emotion analysis tasks, as well as the problems in the sequence model:the model will decode the input text sequence into a specific length vector, if the length of the vector is set too short, the information of input text will be lost. A bidirectional LSTM sentiment classification method is proposed based on multi-channel features and self-attention (MFSA-BiLSTM). This method models the existing linguistic knowledge and sentiment resources in sentiment analysis tasks to form different feature channels, and uses self-attention mechanism to focus on sentiment information. MFSA-BiLSTM model can fully explore the relationship between sentiment target words and sentiment polar words in a sentence, and does not rely on a manually compiled sentiment lexicon. In addition, this study proposes the MFSA- BiLSTM-D model based on the MFSA-BiLSTM model for document-level text classification tasks. The model first obtains all sentence expressions of the document through training, and then gets the entire document representation. Finally, experimental verifications are conducted on five sentiment classification datasets. The results show that MFSA-BiLSTM and MFSA-BiLSTM-D are superior to other state-of-the-art text classification methods in terms of classification accuracy in most cases.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5992
相关话题/资源 信息 序列 语言 知识

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于路径分析和信息熵的错误定位方法
    摘要:软件错误定位是一项耗时又费力的工作,因此如何提高软件错误定位的自动化程度一直以来都是软件工程领域研究的热点.现有的基于频谱的错误定位方法很少利用程序的上下文信息,而程序的上下文信息对错误定位至关重要.针对这一问题,提出了一种基于路径分析和信息熵的错误定位方法FLPI.该方法在基于频谱信息技术的 ...
    本站小编 Free考研考试 2022-01-02
  • 面向AADL模型的存储资源约束可调度性分析
    摘要:嵌入式实时系统在安全关键领域变得越来越重要,其广泛应用于航空航天、汽车电子等具有严格时间约束的实时系统中.随着嵌入式系统的复杂度越来越高,在系统开发的早期设计阶段就需要对其可调度性进行分析评估.系统中的存储资源会对可调度性产生一定影响,在抢占式实时嵌入式系统引入缓存后,任务的最坏执行时间可能发 ...
    本站小编 Free考研考试 2022-01-02
  • 以太坊中间语言的可执行语义
    摘要:智能合约是实现各类区块链应用的核心软件程序.近期,以太坊区块链平台(Ethereum)上的智能合约暴露出大量错误和安全隐患,在国际上引发了智能合约形式化验证的研究热潮.为提供高可信度的验证结果,智能合约程序语言的形式化必不可少.对以太坊中间语言Yul进行形式化,首次给出了其类型系统和小步操作语 ...
    本站小编 Free考研考试 2022-01-02
  • 一种结构信息增强的代码修改自动转换方法
    摘要:在开发过程中,开发人员在进行缺陷修复、版本更新时,常常需要修改多处相似的代码.如何进行自动代码修改已成为软件工程领域的热点研究问题.一种行之有效的方式是:给定一组代码修改示例,通过抽取其中的代码修改模式,辅助相似代码进行自动转换.在现有工作中,基于深度学习的方法取得了一定进展,但在捕获代码间的 ...
    本站小编 Free考研考试 2022-01-02
  • KGDB:统一模型和语言的知识图谱数据库管理系统
    摘要:知识图谱是人工智能的重要基石,其目前主要有RDF图和属性图两种数据模型,在这两种数据模型之上有数种查询语言.RDF图上的查询语言为SPARQL,属性图上的查询语言主要为Cypher.10年来,各个社区开发了分别针对RDF图和属性图的不同数据管理方法,不统一的数据模型和查询语言限制了知识图谱的更 ...
    本站小编 Free考研考试 2022-01-02
  • LFKT:学习与遗忘融合的深度知识追踪模型
    摘要:知识追踪任务旨在根据学生历史学习行为实时追踪学生知识水平变化,并且预测学生在未来学习表现.在学生学习过程中,学习行为与遗忘行为相互交织,学生的遗忘行为对知识追踪影响很大.为了准确建模知识追踪中学习与遗忘行为,提出一种兼顾学习与遗忘行为的深度知识追踪模型LFKT(learningandforge ...
    本站小编 Free考研考试 2022-01-02
  • 基于信息检索的软件缺陷定位方法综述
    摘要:基于信息检索的软件缺陷定位方法是当前软件缺陷定位领域中的一个研究热点.该方法主要分析缺陷报告文本和程序模块代码,通过计算缺陷报告和程序模块间的相似度,选取与缺陷报告相似度最高的若干程序模块,将其推荐给开发人员.对近些年国内外研究人员在该综述主题上取得的成果进行了系统的梳理和总结.首先,给出研究 ...
    本站小编 Free考研考试 2022-01-02
  • 多模态视觉语言表征学习研究综述
    摘要:我们生活在一个由大量不同模态内容构建而成的多媒体世界中,不同模态信息之间具有高度的相关性和互补性,多模态表征学习的主要目的就是挖掘出不同模态之间的共性和特性,产生出可以表示多模态信息的隐含向量.主要介绍了目前应用较广的视觉语言表征的相应研究工作,包括传统的基于相似性模型的研究方法和目前主流的基 ...
    本站小编 Free考研考试 2022-01-02
  • 基于知识的零样本视觉识别综述
    摘要:零样本学习旨在通过运用已学到的已知类知识去认知未知类.近年来,“数据+知识驱动”已经成为当下的新潮流,而在计算机视觉领域内的零样本任务中,“知识”本身却缺乏统一明确的定义.针对这种情况,尝试从知识的角度出发,梳理了本领域内“知识”这一概念所覆盖的范畴,共划分为初级知识、抽象知识以及外部知识.基 ...
    本站小编 Free考研考试 2022-01-02
  • 一种云环境中的动态细粒度资源调度方法
    摘要:云计算平台中普遍采用固定资源量的粗粒度资源分配方式,由此会引起资源碎片、过度分配、低集群资源利用率等问题.针对此问题,提出一种细粒度资源调度方法,该方法根据相似任务运行时信息推测任务资源需求;将任务划分为若干执行阶段,分阶段匹配资源,从分配时间和分配资源量两方面细化资源分配粒度;资源匹配过程中 ...
    本站小编 Free考研考试 2022-01-02