删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于用户和产品表示的情感分析和评论质量检测联合模型

本站小编 Free考研考试/2022-01-02

摘要:情感分析旨在判断文本的情感倾向,而评论质量检测旨在判断评论的质量.情感分析和评论质量检测是情感分析中两个关键的任务,这两个任务受多种因素的影响而密切相关,同一个产品的情感倾向具有相似的情感极性;同时,同一个用户发表的评论质量也具有一定的相似性.因此,为了更好地研究情感分类和评论质量检测任务的相关性以及用户信息和产品信息分别对情感分类和评论质量检测的影响,提出了一个情感分析和评论质量检测联合模型.首先,使用深度学习方法学习评论的文本信息作为联系两个任务的基础;然后,将用户评论及产品评论作为用户的表示和产品的表示;在此基础上,采用用户注意力机制对用户的表示进行编码,采用产品注意力机制对产品的表示进行编码;最后,将用户表示和产品表示结合起来进行情感分析和评论质量检测.通过在Yelp2013和Yelp2015数据集上的实验结果表明,该模型与现有的神经网络模型相比,能够有效地提高情感分析和在线评论质量检测的性能.



Abstract:Sentiment analysis aims to judge the emotional tendency of the text, while the review quality prediction aims at judging the quality of the review. Sentiment analysis and review quality detection are two key tasks in sentiment analysis, these two tasks are closely related by many factors, the reviews on the same product have similar opinion polarity, and the quality of reviews from the same user tend to be similar. Therefore, this study proposes a joint neural model to learn sentiment analysis and quality prediction in order to better study the correlation between sentiment classification and review quality prediction tasks and the impact of user information and product information on sentiment classification and review quality prediction respectively. First of all, this study employs a deep representation learning approach to learn textual information of reviews, serving as the basis to connect two tasks, and then uses the user reviews and product reviews as the representation of the user and the representation of the product, on the basis, a user attention is adopted to encode user information in user representation, and a product attention is used to encode product information in product representation, and finally both user and product representations are jointly integrated for sentiment analysis and quality prediction with attention mechanism. The experimental results on the Yelp2013 and Yelp2015 datasets show that the proposed model can effectively improve the performance of sentiment analysis and online review quality prediction compared with the existing neural network models.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5895
相关话题/质量 信息 实验 数据 基础

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于双层协同的联盟区块链隐私数据保护方法
    摘要:为了解决联盟区块链平台中的隐私保护问题,提出了一种基于双层协同的隐私数据保护方法,包括:(1)链间隐私保护:通过将不同业务的数据进行分流处理、分区存储,实现了不同业务之间的隐私机密性保护;(2)链内隐私保护:通过在交易体中嵌入字段来指定链内隐私数据的参与方,并由接收交易的区块链节点作为中转节点 ...
    本站小编 Free考研考试 2022-01-02
  • 基于全局和局部信息的视频记忆度预测
    摘要:视频的记忆度是一种度量指标,用来表示一段视频能够普遍被人记住的程度.令人记忆深刻而难忘的视频具有很大的潜在价值,因此对能够进行大规模视频记忆度自动预测的模型将会有广大的应用前景和市场,例如视频检索、数字内容推荐、广告设计、教育系统等等.现有的大部分工作都是直接利用深度神经网络学习到的一个全局表 ...
    本站小编 Free考研考试 2022-01-02
  • 基于日志数据的分布式软件系统故障诊断综述
    摘要:基于日志数据的故障诊断是指通过智能化手段分析系统运行时产生的日志数据以自动化地发现系统异常、诊断系统故障.随着智能运维(artificialintelligenceforIToperations,简称AIOps)的快速发展,该技术正成为学术界和工业界的研究热点.首先总结了基于日志数据的分布式软 ...
    本站小编 Free考研考试 2022-01-02
  • 数据中心网络负载均衡问题研究
    摘要:数据中心网络是现代网络和云计算的重要基础设施,实现数据中心网络负载均衡是保证网络吞吐并提高服务体验的关键环节.首先分析了数据中心网络与传统互联网之间的区别,总结其特点及特殊性在负载均衡方案设计方面的优势.然后从数据中心的复杂性和多样性角度分析其负载均衡方案设计所面临的挑战.将现有数据中心网络负 ...
    本站小编 Free考研考试 2022-01-02
  • 信息物理系统软件设计自动化专题前言
    摘要:为了更精确地认识与改造世界,新一代的嵌入式系统必须将计算世界与物理世界作为紧密交互的整体进行认知,实现集计算、通信与控制于一体的深度融合的理论体系与技术框架,即信息物理系统(cyber-physicalsystems,简称CPS).与传统嵌入式系统不同,CPS充分考虑了计算部件与物理环境的深度 ...
    本站小编 Free考研考试 2022-01-02
  • 面向大数据分析作业的启发式云资源供给方法
    摘要:云计算已成为大数据分析作业的主流运行支撑环境,选择合适的云资源优化其性能面临巨大挑战.当前研究主要考虑大数据分析框架(如Hadoop,Spark等)的多样性,采用机器学习方法进行资源供给,但样本少容易陷入局部最优解.提出了大数据环境下基于负载分类的启发式云资源供给方法RP-CH,基于云资源共享 ...
    本站小编 Free考研考试 2022-01-02
  • 面向顺序存储结构的数据流分析
    摘要:C程序中数组、malloc动态分配后的连续内存等顺序存储结构被大量使用,但大多数传统的数据流分析方法未能充分描述其结构及其上的操作,特别是在利用指针访问顺序存储结构时,传统的分析方法只关注了指针的指向关系,而未讨论指针可能发生偏移的数值信息,且未考虑发生偏移时可能存在越界的不安全问题,导致了对 ...
    本站小编 Free考研考试 2022-01-02
  • 基于代理重加密的云数据访问授权确定性更新方案
    摘要:有越来越多的用户选择云为其进行存储、运算、共享等数据处理工作,因此云端数据量与日俱增,其中不乏敏感数据和隐私信息.如何对用户托管于云端的数据进行授权管理,保证数据机密性、访问授权有效性等至关重要.为此,提出一种基于代理重加密(proxyre-encryption,简称PRE)的云端数据访问授权 ...
    本站小编 Free考研考试 2022-01-02
  • 面向流数据分类的在线学习综述
    摘要:流数据分类旨在从连续不断到达的流式数据中增量学习一个从输入变量到类标变量的映射函数,以便对随时到达的测试数据进行准确分类.在线学习范式作为一种增量式的机器学习技术,是流数据分类的有效工具.主要从在线学习的角度对流数据分类算法的研究现状进行综述.具体地,首先介绍在线学习的基本框架和性能评估方法, ...
    本站小编 Free考研考试 2022-01-02
  • 面向众包数据清洗的主动学习技术
    摘要:传统方法多数采用机器学习算法对数据进行清洗.这些方法虽然能够解决部分问题,但存在计算难度大、缺乏充足的知识等局限性.近年来,随着众包平台的兴起,越来越多的研究将众包引入数据清洗过程,通过众包来提供机器学习所需要的知识.由于众包的有偿性,研究如何将机器学习算法与众包有效且低成本结合在一起是必要的 ...
    本站小编 Free考研考试 2022-01-02