摘要:知识图谱是人工智能的重要基石.各领域大规模知识图谱的构建和发布对知识图谱数据管理提出了新的挑战.以数据模型的结构和操作要素为主线,对目前的知识图谱数据管理理论、方法、技术与系统进行研究综述.首先,介绍知识图谱数据模型,包括RDF图模型和属性图模型,介绍5种知识图谱查询语言,包括SPARQL、Cypher、Gremlin、PGQL和G-CORE;然后,介绍知识图谱存储管理方案,包括基于关系的知识图谱存储管理和原生知识图谱存储管理;其次,探讨知识图谱上的图模式匹配、导航式和分析型3种查询操作.同时,介绍主流的知识图谱数据库管理系统,包括RDF三元组库和原生图数据库,描述目前面向知识图谱的分布式系统与框架,给出知识图谱评测基准.最后,展望知识图谱数据管理的未来研究方向.
Abstract:Knowledge graphs have become the cornerstone of artificial intelligence. The construction and publication of large-scale knowledge graphs in various domains have posed new challenges on the data management of knowledge graphs. In this paper, in accordance with the structural and operational elements of a data model, the current theories, methods, technologies, and systems of knowledge graph data management are surveyed. First, the paper introduces knowledge graph data models, including the RDF graph model and the property graph model, and also introduces 5 knowledge graph query languages, including SPARQL, Cypher, Gremlin, PGQL, and G-CORE. Second, the storage management schemes of knowledge graphs are presented, including relational-based and native approaches. Third, three kinds of query operations are discussed, which are graph pattern matching, navigational, and analytical queries. Fourth, the paper introduces mainstream knowledge graph database management systems, which are categorized into RDF triple stores and native graph databases. Meanwhile, the state-of-the-art distributed systems and frameworks that are used for processing knowledge graphs are also described, and benchmarks are presented for knowledge graphs. Finally, the future research directions of knowledge graph data management are put forward as well.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5841
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
知识图谱数据管理研究综述
本站小编 Free考研考试/2022-01-02
相关话题/知识 介绍 管理 系统 图谱
基于许可链的SWIFT系统分布式架构
摘要:跨境金融通信对于现代金融业务的开展极为重要.环球银行金融电信协会(SWIFT)是跨境金融通信服务的主要提供者.现阶段,报文传输是SWIFT系统的主要业务,确保报文传输安全、准确、高效,是SWIFT系统的重要目标.但现阶段基于中心架构思想的SWIFT系统安全风险突出,传输效率低,成本较高.基于许 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02可微分抽象机混合编程系统
摘要:自动化编程是智能软件的核心挑战之一,使用程序执行轨迹或输入输出样例学习程序,是自动化编程的典型研究方法.这些方法无法弥合常规程序元素与神经网络组件间的隔阂,不能吸收经验信息输入、缺乏编程控制能力.给出了一种可无缝结合高级编程语言与神经网络组件的混合编程模型:使用高级编程语言元素和神经网络组件元 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02企业级海量代码的检索与管理技术
摘要:在大型IT企业中,尤其像Google或者百度,代码搜索已是软件开发过程中不可或缺且频繁的活动,其通过借鉴或复用已有代码,加速开发过程的速度.多年以来,已有大量的研究人员关注代码搜索,且设计出很多优秀的工具.但是已有的研究和工具主要是在小规模或者编程语言单一的代码数据集上,没有从企业实际搜索需求 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02多媒体数据的知识关联与理解专题前言
摘要:Abstract:PDF全文下载地址:http://jos.org.cn/jos/article/pdf/5668 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02智能数据管理与分析技术专刊前言
摘要:数据管理与智能计算的深度融合已经成为大数据时代顺利前行的迫切需求.智能数据管理旨在“为数据增添智能”,是数据科学与技术的重要基石,更是大数据产业蓬勃发展的关键支撑.一方面,将新一代人工智能方法应用于先进数据管理技术,尝试探索和突破智能数据管理与分析的理论体系、技术方法及系统平台,已经成为数据管 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向云应用系统的容错即服务优化提供方法
摘要:通过提供高效且持续可用的容错服务以保障云应用系统的可靠运行是至关重要的.采用容错即服务的模式,提出了一种优化的云容错服务动态提供方法,从云应用组件的可靠性及响应时间等方面描述云应用容错需求,以常用的复制、检查点和NVP(N-versionprogramming)等容错技术为基础,充分考虑容错服 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于强化学习的金融交易系统研究与发展
摘要:近年来,强化学习在电子游戏、棋类、决策控制等领域取得了巨大进展,也带动着金融交易系统的迅速发展.金融交易问题已经成为强化学习领域的研究热点,特别是股票、外汇和期货等方面具有广泛的应用需求和学术研究意义.以金融领域常用的强化学习模型的发展为脉络,对交易系统、自适应算法、交易策略等方面的诸多研究成 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02用于验证多智能体系统的APTL模型检测器
摘要:由于经典的线性时序逻辑表达能力有限,设计并开发了基于交替投影时序逻辑(alternatingprojectiontemporallogic,简称APTL)的模型检测工具.根据王海洋等人提出的APTL符号模型检测方法,设计并实现了APTL模型检测器MCMAS_APTL.该工具可用于多智能体系统( ...中科院软件研究所 本站小编 Free考研考试 2022-01-02系统软件新洞察
摘要:系统软件是计算学科的基本概念之一,从系统软件的本质特征、时代特点和发展趋势这3个方面给出了关于系统软件的新洞察.洞察1认为,通用图灵机和存储程序思想是系统软件的理论源头和技术源头,其本质特征是"操纵计算系统执行",编码加载和执行管控是两种主要的操纵方式.洞察2认为,系统软件在互联网时代的时代特 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02软件过程与管理方法综述
摘要:工程化软件开发需要对软件开发整个过程进行有效的组织和管理,由此产生了一系列软件开发组织和管理方法,其主要目的是形成一种载体,用以积累和传递关于软件开发的经验教训.然而,由于软件开发的一些天然特性(比如复杂性和不可见性)的存在,使得描述软件开发过程的软件开发与组织方法也天然地带着一定的抽象性.由 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02