删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

引入多级扰动的混合型粒子群优化算法

本站小编 Free考研考试/2022-01-02

摘要:为解决粒子群优化算法易陷入局部最优值的问题,提出一种引入多级扰动的混合型粒子群优化算法.该算法结合两种经典改进粒子群优化算法的优点,即带惯性参数的标准粒子群优化算法和带收缩因子的粒子群优化算法,在此基础上,引入多级扰动机制:在更新粒子位置时,引入一级扰动,使粒子对解空间的遍历能力得到加强;若优化过程陷入“局部最优”的情况,则引入二级扰动,使得优化过程继续,从而摆脱局部最优值.使用了6个测试函数——Sphere函数、Ackley函数、Rastrigin函数、Styblinski-Tang函数、Duadric函数及Rosenbrock函数来对所提出的混合型粒子群优化算法进行仿真运算和对比验证.模拟运算的结果表明:所提出的混合型粒子群优化算法在对测试函数进行仿真时,其收敛精度和收敛速度都优于另外两种经典的改进粒子群优化算法;另外,在处理多峰函数时,本算法不易被局部最优值所限制.



Abstract:To avoid the locally optimum which is frequently be the result of a calculation of particle swarm optimization (PSO) algorithm, it is proposed in this study a new mixed PSO algorithm with multistage disturbance (MPSO). MPSO combined features from two former classic improved PSO algorithms, which are standard particle swarm optimization (SPSO) and standard particle swarm optimization with a constriction factor (PSOCF). Furthermore, a strategy with multistage disturbances was also introduced into the algorithm:The first-level disturbance was used to enhance the ability of the particles to traverse the solution space when renewing the positions, while the second-level disturbance would be introduced when locally optimal solution was received to continue the optimization process. Six test functions, namely the Sphere, Ackley, Rastrigin, Styblinski-Tang, Duadric, and Rosenbrock functions, were used to simulate the optimization calculation, and the results from proposed algorithm MPSO were compared with those from SPSO and PSOCF. The results show that for the test functions, MPSO can get the optimal value much more quickly and easily than the other two algorithms, and the convergence precision of MPSO was significantly higher than the others. It can be concluded that MPSO can get over the problem of locally optimal solution when dealing with multimodal functions.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5600
相关话题/优化 测试 过程 空间 粒子

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于频繁模式挖掘的GCC编译时能耗演化优化算法
    摘要:演化算法通过搜寻GCC编译器最优编译选项集,对可执行代码的能耗进行改进,以达到编译时优化嵌入式软件能耗的目的.但这类算法未考虑多个编译选项之间可能存在相互影响,导致了其解质量不高且收敛速度慢的问题.针对这一不足,设计了一种基于频繁模式挖掘的遗传算法GA-FP.该算法在演化过程中利用频繁模式挖掘 ...
    本站小编 Free考研考试 2022-01-02
  • 敏感变量和感知机结合的测试预言生成方法
    摘要:测试预言生成技术是软件工程测试领域的研究热点之一.没有可以利用的历史测试用例是目前大部分测试预言生成技术的普遍假设,但是这种假设会使我们错过利用现有部分测试用例协助自动生成新测试用例预言的机会.在已知部分测试用例集的情况下,提出了基于敏感变量和线性感知机的新测试用例的测试预言自动生成方法.首先 ...
    本站小编 Free考研考试 2022-01-02
  • 面向持续集成测试优化的强化学习奖励机制
    摘要:持续集成环境下的测试存在测试用例集变化大、测试时间有限和快速反馈等需求,传统的测试优化方法难以适用.强化学习是机器学习的一个重要分支,其本质是解决序贯决策问题,可以用于持续集成测试优化.但现有的基于强化学习的方法中,奖励函数计算只包括测试用例在当前集成周期的执行信息.从奖励函数设计和奖励策略两 ...
    本站小编 Free考研考试 2022-01-02
  • Platoon架构下VANETs车间通信过程及性能分析
    摘要:智能车辆编组platoon的稳定运行需要车辆间实时可靠的信息传输来保证.针对应用专用短程通信(DSRC)技术来实现车载自组织网路(VANETs)车间通信的platoon架构,提出了一种车间通信网络性能的分析方法,分别对platoon组内智能车辆间通信和多个platoons组间通信的过程进行了分 ...
    本站小编 Free考研考试 2022-01-02
  • 面向云应用系统的容错即服务优化提供方法
    摘要:通过提供高效且持续可用的容错服务以保障云应用系统的可靠运行是至关重要的.采用容错即服务的模式,提出了一种优化的云容错服务动态提供方法,从云应用组件的可靠性及响应时间等方面描述云应用容错需求,以常用的复制、检查点和NVP(N-versionprogramming)等容错技术为基础,充分考虑容错服 ...
    本站小编 Free考研考试 2022-01-02
  • 互联网端到端多路径传输跨层优化研究综述
    摘要:近年来,随着虚拟现实、物联网、云计算等新兴技术的发展,用户对网络带宽的需求迅猛增加,使用单一接入技术已经难以满足用户对网络带宽的需求.为了解决用户日益增长的带宽需求和有限的频率资源之间的矛盾,互联网端到端多路径传输技术应运而生.互联网端到端多路径传输协议,如MPTCP(multipathTCP ...
    本站小编 Free考研考试 2022-01-02
  • VANET中流调度与路径选择联合优化的传输策略
    摘要:由于车辆节点与路边设施的强大存储与计算能力、良好的无线通信能力以及不间断的能量供应,车载自组网(vehicularad-hocnetwork,简称VANET)可检测车辆行驶环境的变化,评测危险路况并预警,如前方事故现场预警、交叉路口防碰撞预警等,预估司机的反应时间,为安全驾驶及驾驶体验提供技术 ...
    本站小编 Free考研考试 2022-01-02
  • 空间延迟/中断容忍网络的接触图路由研究综述
    摘要:基于覆盖协议和存储-携带-转发范式的延迟/中断容忍网络(delay/disruptiontolerantnetwork,简称DTN)被认为是应对空间环境挑战(如长延迟、间歇性连接等)的有效解决方案.接触图路由(contactgraphrouting,简称CGR)是一种利用空间DTN网络拓扑的先 ...
    本站小编 Free考研考试 2022-01-02
  • 软件过程与管理方法综述
    摘要:工程化软件开发需要对软件开发整个过程进行有效的组织和管理,由此产生了一系列软件开发组织和管理方法,其主要目的是形成一种载体,用以积累和传递关于软件开发的经验教训.然而,由于软件开发的一些天然特性(比如复杂性和不可见性)的存在,使得描述软件开发过程的软件开发与组织方法也天然地带着一定的抽象性.由 ...
    本站小编 Free考研考试 2022-01-02
  • 基于切空间判别学习的流形降维算法
    摘要:在基于图像集的流形降维问题中,许多算法的核心思想都是把一个高维的流形直接降到一个维数相对较低、同时具有的判别信息更加充分的流形上.投影度量学习(projectionmetriclearning,简称PML)是一种Grassmann流形降维算法.该算法是基于投影度量,并且使用RCG(Rieman ...
    本站小编 Free考研考试 2022-01-02