摘要:可交换性假设是采用贝叶斯模型对网络数据建模的重要前提,基于Aldous-Hoover表示理论的可交换图不能生成稀疏网络.实证结果表明,真实世界中的很多复杂网络都具有节点度幂律分布的稀疏特征,基于Kallenberg表示理论的可交换图能够同时满足可交换性和稀疏性.以Caron-Fox模型和Graphex模型为例,对稀疏可交换图建模的相关概念、理论和方法的研究发展进行了综述.首先讨论了随机图、贝叶斯非参数混合模型、可交换表示理论、Poisson点过程、离散非参数先验等理论的研究历程;然后介绍了Caron-Fox模型的表示;进而总结了进行稀疏可交换图的随机模拟所涉及的截断采样和边缘化采样方法;接下来综述了稀疏可交换图模型的后验推理技术;最后对稀疏可交换图建模的最新进展和研究前景做了介绍.
Abstract:Exchangeability is a key to model network data with Bayesian model. The Aldous-Hoover representation theorem based exchangeable graph model can't generate sparse network, while empirical studies of networks indicate that many real-world complex networks have a power-law degree distribution. Kallenberg representation theorem based exchangeable graph model can admit power-law behavior while retaining desirable exchangeability. This article offers an overview of the emerging literature on concept, theory and methods related to the sparse exchangeable graph model with the Caron-Fox model and the Graphex model as examples. First, developments of random graph models, Bayesian non-parametric mixture models, exchangeability representation theorem, Poisson point process, discrete non-parametric prior etc. are discussed. Next, the Caron-Fox model is introduced. Then, simulation of the sparse exchangeable graph model and related methods such as truncated sampler, and marginalized sampler are summarized. In addition, techniques of model posterior inference are viewed. Finally, state-of-the-art and the prospects for development of the sparse exchangeable graph model are demonstrated.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5558
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
稀疏可交换图建模研究综述
本站小编 Free考研考试/2022-01-02
相关话题/网络 介绍 技术 过程 数据
面向位置大数据的快速密度聚类算法
摘要:面向位置大数据聚类,提出了一种简单但高效的快速密度聚类算法CBSCAN,以快速发现位置大数据中任意形状的聚类簇模式和噪声.首先,定义了Cell网格概念,并提出了基于Cell的距离分析理论,利用该距离分析,无需距离计算,可快速确定高密度区域的核心点和密度相连关系;其次,给出了网格簇定义,将基于位 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于时隙传输的数据中心路由算法设计
摘要:基于软件定义网络(softwaredefinednetwork,简称SDN)的数据中心流量工程,能够通过对全局视图的网络管控,动态选择路由路径,规避拥塞发生的风险.但是在制定路由策略时,经常会对数据流进行迁移,尤其是针对大流的迁移容易造成数据流丢包以及接收端数据包乱序的问题.提出了基于时隙的流 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向隐私保护的新型技术与密码算法专题前言
摘要:Abstract:PDF全文下载地址:http://jos.org.cn/jos/article/pdf/5366 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02同态加密技术及其在云计算隐私保护中的应用
摘要:云计算技术的快速发展使得云服务模式具备了广阔的应用空间,这种模式使用户具备了过往无法比拟的计算能力和存储空间等优势.在云服务模式下用户的隐私安全问题是其推广和应用中面临的首要问题,如何在计算数据的过程中,既保证数据的隐私性,又保证其可用性,是面临的一大难题,同态加密技术作为解决这一问题的关键手 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于恶意读写器发现的RFID空口入侵检测技术
摘要:随着RFID技术的不断发展,其在物流管理、货物监控、会议安全保障等领域的应用越来越广泛,但随之而来的安全威胁是不得不需要考虑的隐患因素.在无线通信技术中,空中接口定义了终端设备与网络设备之间的电磁连接技术规范.目前大部分RFID设备采用公开的标准通信协议进行数据传输,使得RFID系统容易遭到恶 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于离线密钥分发的加密数据重复删除方法
摘要:重复数据删除技术受到工业界和学术界的广泛关注.研究者致力于将云服务器中的冗余数据安全地删除,明文数据的重复删除方法较为简单.而用户为了保护隐私,会使用各自的密钥将数据加密后上传至云服务器,形成不同的加密数据.在保证安全性的前提下,加密数据的重复删除较难实现.目前已有的方案较多依赖于在线的可信第 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向云数据的隐私度量研究进展
摘要:隐私保护技术是云计算环境中防止隐私信息泄露的重要保障,通过度量这种泄露风险可反映隐私保护技术的隐私保护强度,以便构建更好的隐私保护方案.因此,隐私度量对隐私保护具有重大意义.主要对现有面向云数据的隐私度量方法进行综述:首先,对隐私保护技术和隐私度量进行概述,给出攻击者背景知识的量化方法,提出云 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02深度神经网络训练中梯度不稳定现象研究综述
摘要:深度神经网络作为机器学习领域的热门研究方向,在训练中容易出现梯度不稳定现象,是制约其发展的重要因素,控制和避免深度神经网络的梯度不稳定现象是深度神经网络的重要研究内容.分析了梯度不稳定现象的成因和影响,并综述了目前解决梯度不稳定现象的关键技术和主要方法.最后展望了梯度不稳定现象的未来研究方向. ...中科院软件研究所 本站小编 Free考研考试 2022-01-02自动分析递归数据结构的归纳性质
摘要:提出了一种对递归数据结构的归纳性质进行自动化分析的框架.工作分为3个主要部分.首先,它将递归数据结构的归纳性质分为两个主要类别,并提出对应的处理模式,从而帮助简化对于程序中的递归数据结构上的相关性质的分析.其次,提出了一种称为分割与拼接的技术来发现和描述递归数据结构是如何被程序修改的:递归数据 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于类型理论的领域数据建模和验证及案例
摘要:数据作为软件系统的主要处理对象,其规范性有助于软件系统的设计开发和软件系统之间的数据交换.面向行业数据规范及其验证,提出了一种基于类型理论的领域数据建模语言(DDML)和领域建模方法(DDMM).DDML语言通过定义类型和项的语法和语义,描述领域数据类型和对象的结构,通过定义类型规则及其类型检 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02