删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

社交网络高效高精度去匿名化算法

本站小编 Free考研考试/2022-01-02

摘要:自从社交网络成为重要的研究课题,社交网络隐私保护也成为了重要的研究内容,尤其是关于公开发布以供研究的大规模社交网络图数据的隐私保护.为了评估用户的隐私风险,研究者们设计了不同的方法对图进行去匿名化,在不同的图网络中识别个体的身份.但是,当前的去匿名化算法或者需要高质量的种子匹配,或者在精确度和效率上颇有不足.提出一种高效高精度的无种子去匿名化算法RoleMatch,基于社交网络的拓扑结构识别个体身份.该算法包括:(1)可以快速计算的两图结点间相似度度量方法RoleSim++;(2)一种有效的结点匹配算法,此法同时考虑了结点间的相似度和中间匹配结果的反馈.在实验部分,利用LiveJournal的数据,用RoleMatch对比了多种流行的匿名化算法,并根据实际应用情景,在传统实验的基础上增加了局部去匿名化的实验,实验结果验证了所提出的去匿名化算法的优秀性能.



Abstract:Ever since social networks became the focus of a great number of researches, the privacy risks of published network data have also raised considerable concerns. To evaluate users' privacy risks, researchers have developed methods to de-anonymize graphs and identify same person in different graphs, yet the existing algorithms either requires high-quality seed mappings, or have low accuracy and high expense. In this paper, an effective and efficient seedless de-anonymization algorithm, "RoleMatch" is proposed. This algorithm is based on the network topology and consists of (1) a new cross-graph node similarity measurement "RoleSim++" with fast computation method, and (2) an effective node matching algorithm considering both similarities and feedbacks. In experiments, the algorithm is tested with graphs anonymized in several popular anonymization ways, using the data from LiveJournal. In addition to the traditional symmetric experiments, an asymmetric experiment setting is proposed to mimic closer to real-world application. The results from those experiment show that with the proposed algorithm the de-anonymization work achieves superior performance compared with existing de-anonymization algorithms.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5436
相关话题/实验 网络 种子 数据 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于循环神经网络的数据库查询开销预测
    摘要:在数据库负载管理、性能调优过程中,开销预测模型是提高其效率的关键技术.首先,由于数据库系统的复杂性和计算机资源的竞争,很难精确地估计不同操作的开销;其次,现有的研究大多没有真正预测查询的执行时间,而是预测了类似查询优化器中开销模型生成的开销;由于查询计划结构的复杂性,现有研究更多地使用了笼统的 ...
    本站小编 Free考研考试 2022-01-02
  • 全视角特征结合众包的跨社交网络用户识别
    摘要:随着互联网的普及和不断发展,用户通过多个社交网络进行社交活动,使用社交网络带来的丰富内容和服务.通过识别出不同社交网络上的同一用户,可以有助于进行用户推荐、行为分析、影响力最大化.已有方法主要基于用户的结构特征和属性特征来识别匹配用户,大多仅考虑局部结构,且受已知匹配用户数量的限制,提出一种基 ...
    本站小编 Free考研考试 2022-01-02
  • 基于社区的动态网络节点介数中心度更新算法
    摘要:随着互联网技术的迅猛发展,社会网络呈现出爆炸增长的趋势,传统的静态网络分析方法越来越难以达到令人满意的效果.于是,对网络进行动态分析就成为社会网数据管理领域的一个研究热点.节点介数中心度衡量的是一个节点对图中其他点对最短路径的控制能力,有利于挖掘社会网络中的重要节点.在图结构频繁变化的场合,若 ...
    本站小编 Free考研考试 2022-01-02
  • 多维图结构聚类的社交关系挖掘算法
    摘要:社交关系的数据挖掘一直是大图数据研究领域中的热门问题.图聚类算法如SCAN(structuralclusteringalgorithmfornetwork)虽然可以迅速地从海量图数据中获得关系紧密的社区结构,但这类社区往往只表示了社交对象的聚集,无法反馈对象间的真实社交关系,如家庭成员、同事、 ...
    本站小编 Free考研考试 2022-01-02
  • 应对倾斜数据流在线连接方法
    摘要:并行环境下的分布式连接处理要求制定划分策略以减少状态迁移和通信开销.相对于数据库管理系统而言,分布式数据流管理系统中的在线θ连接操作需要更高的计算成本和内存资源.基于完全二部图的连接模型可支持分布式数据流的连接操作.因为连接操作的每个关系仅存放于二部图模型的一侧处理单元,无需复制数据,且处理单 ...
    本站小编 Free考研考试 2022-01-02
  • 深度网络模型压缩综述
    摘要:深度网络近年来在计算机视觉任务上不断刷新传统模型的性能,已逐渐成为研究热点.深度模型尽管性能强大,然而由于参数数量庞大、存储和计算代价高,依然难以部署在受限的硬件平台上(如移动设备).模型的参数在一定程度上能够表达其复杂性,相关研究表明,并不是所有的参数都在模型中发挥作用,部分参数作用有限、表 ...
    本站小编 Free考研考试 2022-01-02
  • 网络评论方面级观点挖掘方法研究综述
    摘要:网络评论的观点挖掘任务是文本分析的关键问题之一.随着网络评论的快速增长,用户在浏览评论时更加关注细粒度的信息,因此,对评论进行方面级观点挖掘能够帮助消费者更好地做出决策.过去的10多年间,研究人员在大量网络评论语料库上进行观点挖掘等相关研究,并取得了丰硕的研究成果和广泛的应用价值,更不乏优秀* ...
    本站小编 Free考研考试 2022-01-02
  • 分布式数据库中一致性与可用性的关系
    摘要:随着各类应用在数据量和业务量上的扩展,单机数据库系统越发难以应对现实需求.分布式数据库能够根据业务的需求动态地扩容,因此逐步开始受到应用的青睐.近年来,分布式数据库产品层出不穷,并在互联网应用中被大量投入使用.然而,分布式数据库的系统复杂度前所未有.为了让系统可用,设计者需要在多种属性中作合理 ...
    本站小编 Free考研考试 2022-01-02
  • 软件定义网络控制平面可扩展性研究进展
    摘要:软件定义网络(software-definednetworking,简称SDN)遵循控制转发分离的设计原则,其控制平面采用集中的控制逻辑,在提供灵活、高效的网络控制的同时,也面临着严重的可扩展性问题.对SDN控制平面可扩展性相关工作进行了综述.首先,分析了控制平面可扩展性的影响因素并给出改善思 ...
    本站小编 Free考研考试 2022-01-02
  • 区块链与可信数据管理:问题与方法
    摘要:作为支撑比特币实现无中心高可信的账本管理的技术,区块链在金融领域得到了广泛关注.区块链实现了不完全可信环境中的可信数据管理,具有去中心化、防篡改、不可抵赖、强一致和完整性等特性,但同时也存在高延迟和低吞吐率的性能问题.在互联网技术发展、新型应用层出不穷的大背景下,借鉴区块链在数字加密货币应用中 ...
    本站小编 Free考研考试 2022-01-02