

1. 清华大学 能源与动力工程系, 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 武汉第二船舶设计研究所 热能动力技术重点实验室, 武汉 430205
收稿日期:2021-10-27
基金项目:国家重点研发计划项目(2020YFB1901401); 佛山-清华产学研合作协同创新专项(2020THFS0107); 水沙科学与水利水电工程国家重点实验室自主科研项目(2021-KY-04); 国家自然科学基金项目(51809148); 北京市自然科学基金项目(3192015)
作者简介:鲁阳平(1998—), 男, 硕士研究生
通讯作者:谭磊, 特别研究员, E-mail:tanlei@tsinghua.edu.cn
摘要:混流泵在启动过程中, 内部会出现流动冲击和旋转失速等现象, 瞬态性能十分复杂。该文通过混流泵瞬态扬程方程和管路系统阻力方程的联立求解, 建立了一套混流泵启动过程瞬态性能理论预测模型。通过给定转速加速曲线, 得到混流泵启动过程中流量和扬程随时间的变化规律。同时, 构建了混流泵与管路系统的三维几何模型, 数值计算得到了混流泵启动过程瞬态特性, 结果与理论模型预测结果吻合较好, 验证了该理论预测模型的准确性。启动过程中, 流量增大滞后于转速上升, 转速加速结束后流量缓慢增长并最终趋于稳定。混流泵瞬态扬程可分为稳态项扬程、加速项扬程和惯性项扬程。加速项扬程和惯性项扬程在启动过程中影响较大。
关键词:混流泵启动瞬态性能理论模型
Theoretical model of transient mixed-flow pump start-up
LU Yangping1, MA Can2, TAN Lei1


1. State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China;
2. Science and Technology on Thermal Energy and Power Laboratory, Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
Abstract: Start-up transients in mixed-flow pumps are very complex due to the flow variations and rotational stall during start-up. A transient head equation was solved with a pipe resistance equation in this study to give a theoretical model for the varying flow rate and head during start-up of a mixed-flow pump. The model included the rotational acceleration to predict the variation of the flowrate and head during start-up. The start-up was also modeled with a three-dimensional numerical model of the mixed-flow pump and pipe system to predict the transient pump characteristics. The model predictions agree well with the numerical results to validate the theoretical model. During start-up, the flowrate does not increase as fast as the speed but continues to slowly increase after the pump has reached the maximum rotational speed. The transient pump head can be divided into the steady-state head, the acceleration head and the inertia head with the acceleration and inertia heads greatly influencing start-up.
Key words: mixed-flow pumpstart-uptransient characteristicstheoretical model
混流泵兼具离心泵和轴流泵2种泵型的优点,可在较宽的流量区间内高效运行,广泛应用于水利、电力、水力推进等行业领域。混流泵在启动、停机、调转速、调阀等变工况条件下,内部会出现流动冲击、进出口回流、二次流、分离流、旋转失速等现象,将引起性能的剧烈变化,瞬态特性十分复杂。
近年来,许多****相继开展了叶片泵启动过程的瞬态特性及其与内流场关联规律的相关研究。Tsukamoto等[1]对低比转速离心泵的启动过程进行研究,结果发现瞬态特性与准稳态假设的结果存在差异,泵无量纲扬程系数在启动早期远大于稳态假设值,之后迅速下降并低于稳态值。文[2-4]分别在不同启动加速度和不同管路系统中对离心泵进行启动试验,进一步验证了瞬态性能与稳态性能的差别。王乐勤等[5-6]发现启动过程中流量和扬程的增大滞后于转速的增加。在此基础上,胡征宇等[7]研究了不同阀门开度对离心泵启动特性的影响,结果发现阀门全关时实测扬程与理论扬程吻合较好,泵启动过程中一部分扬程被用作管路中流体加速。吴大转等[8-9]研究了不同启动加速度下离心泵的启动过程,结果发现较大的加速度能更好地抑制空化。
试验研究主要侧重泵启动过程的外特性,对泵启动过程的内流场研究主要是数值模拟。Li等[10-11]采用动态滑移区域法研究了离心泵启动中叶轮旋转加速引起的流场变形问题,结果表明叶片之间的主涡会在启动过程中占据流道造成扬程低于准稳态假设值。杨从新等[12]分析了离心泵启动过程叶片及蜗壳内的压力分布规律,发现启动初期受脉动作用的影响,泵内流场压力呈现进出口高、流道中间低等特点。陈红勋等[13]对ANSYS CFX软件进行了二次开发,根据输入驱动力矩自动更新转速曲线,所得计算结果与试验结果存在偏差,但变化趋势定性一致,验证了此种计算方法的有效性。文[14-15]通过数值计算分析了混流泵启动过程中压力场和速度场的变化过程,揭示了启动过程中大尺度涡堵塞流道是造成流量上升滞后的原因。文[16-17]对混流泵在不同进口压力和不同流量下的启动过程开展研究,采用高速摄影捕获了泵内部空化的组成及随时间变化的过程,结果发现转速加速到额定转速后叶顶泄漏涡空化首先出现,随后向流道内发展,进而形成叶道涡空化。
综上所述,关于泵启动过程的研究主要集中在外特性的试验测量和内流场的数值模拟,而对启动过程瞬态性能的理论建模和性能预测尚不深入。本文以混流泵为研究对象,建立了瞬态扬程与管路阻力耦合求解的方程,实现了混流泵瞬态特性预测,采用数值模拟验证理论预测结果的可靠性,为混流泵瞬态特性的优化控制奠定了基础。
1 混流泵瞬态特性理论分析1.1 基于动量矩定理和能量守恒的瞬态扬程以混流泵叶轮流道内控制体为研究对象,如图 1所示。图 1中,O为转轴上的一点,S为叶轮流道内控制体的封闭曲面,P为控制体内任意一点处的流体微团,r为点P到转轴的径向距离。dr为径向长度微元,dm=dr/sinγ为中间轴面流线的长度微元,γ为中间轴面流线与转轴的夹角。
![]() |
图 1 混流泵流道内控制体 |
图选项 |
基于不可压和无黏假设,对流道内控制体建立动量矩方程:
$\begin{gathered}\boldsymbol{T}=\frac{\mathrm{d}}{\mathrm{d} t} \iiint\limits_V \rho(\boldsymbol{O P} \times \boldsymbol{C}) \mathrm{d} V= \\\iiint\limits_V \rho(\boldsymbol{F} \times \boldsymbol{O} \boldsymbol{P}) \mathrm{d} V+\iint\limits_S(\boldsymbol{\tau} \times \boldsymbol{O} \boldsymbol{P}) \mathrm{d} S.\end{gathered}$ | (1) |
由Gauss定理,式(1)可写为
$\begin{gathered}\frac{\mathrm{d}}{\mathrm{d} t} \iiint\limits_V \rho(\boldsymbol{O P} \times \boldsymbol{C}) \mathrm{d} V= \\\frac{\partial}{\partial t} \iiint\limits_V \rho(\boldsymbol{O} \boldsymbol{P} \times \boldsymbol{C}) \mathrm{d} V+\iint\limits_S \rho(\boldsymbol{O} \boldsymbol{P} \times \boldsymbol{C}) C_{\mathrm{n}} \mathrm{d} S.\end{gathered}$ | (2) |
$T=\frac{\partial}{\partial t} \iiint\limits_V \rho r C_{\mathrm{u}} \mathrm{d} V+\iint\limits_{S_1, S_2} \rho r C_{\mathrm{u}} C_{\mathrm{m}} \mathrm{d} S.$ | (3) |
由式(3)可知,流道内流体的动量矩包含稳态项和瞬态项,其中稳态项可进一步表达为
$\iint\limits_{S_1, S_2} \rho r C_{\mathrm{u}} C_{\mathrm{m}} \mathrm{d} S=\rho Q\left[\left(C_{\mathrm{u}} \cdot r\right)_2-\left(C_{\mathrm{u}} \cdot r\right)_1\right].$ | (4) |
$\begin{gathered}\frac{\partial}{\partial t} \iiint\limits_V \rho r C_{\mathrm{u}} \mathrm{d} V=\frac{\partial}{\partial t} \iiint\limits_V \rho \omega r^2 \mathrm{d} V-\frac{\partial}{\partial t} \iiint\limits_V \rho \frac{r C_{\mathrm{m}}}{\tan \beta} \mathrm{d} V= \\I_\text{z} \cdot \frac{\partial \omega}{\partial t}-\frac{\partial}{\partial t} \iiint\limits_V \rho \frac{r C_{\mathrm{m}}}{\tan \beta} \mathrm{d} V .\end{gathered}$ | (5) |
因此,转轴上的动量矩大小可表示为
$\begin{aligned}T=& \rho Q\left[\left(C_{\mathrm{u}} \cdot r\right)_2-\left(C_{\mathrm{u}} \cdot r\right)_1\right]+\\& I_z \cdot \frac{\partial \omega}{\partial t}-\frac{\partial}{\partial t} \iiint\limits_V \rho \frac{r C_{\mathrm{m}}}{\tan \beta} \mathrm{d} V .\end{aligned}$ | (6) |
$\begin{gathered}T \omega=\frac{\mathrm{d}}{\mathrm{d} t} \iiint\limits_V \rho \frac{C^2}{2} \mathrm{d} V+\rho \iint\limits_{S_1, S_2} \frac{P}{\rho} C_{\mathrm{m}} \mathrm{d} S= \\\frac{\partial}{\partial t} \iiint\limits_V \rho \frac{C^2}{2} \mathrm{d} V+\iint\limits_{S_1, S_2} \rho \frac{C^2}{2} \cdot C_{\mathrm{m}} \mathrm{d} S+\rho \iint\limits_{S_1, S_2} \frac{P}{\rho} C_{\mathrm{m}} \mathrm{d} S= \\\frac{\rho}{2} \frac{\partial}{\partial t} \iiint \int_V\left(U^2+W^2-2 U W \cdot \cos \beta\right) \mathrm{d} V+ \\\iint\limits_{S_1, S_2} \rho\left(\frac{C^2}{2}+\frac{P}{\rho}\right) \cdot C_{\mathrm{m}} \mathrm{d} S= \\I_2 \cdot \omega \cdot \frac{\partial \omega}{\partial t}+\frac{\rho}{2} \frac{\partial}{\partial t} \iiint\limits_V\left(\frac{C_{\mathrm{m}}}{\sin \beta}\right)^2 \mathrm{d} V- \\\rho \frac{\partial}{\partial t}\left(\omega \iiint\limits_V \frac{r C_{\mathrm{m}}}{\tan \beta} \mathrm{d} V\right)+\iint\limits_{S_1, S_2} \rho\left(\frac{C^2}{2}+\frac{P}{\rho}\right) \cdot C_{\mathrm{m}} \mathrm{d} S .\end{gathered}$ | (7) |
$\begin{gathered}H_{\text {transient }}=\frac{P_2-P_1}{\rho g}+\frac{C_2^2-C_1^2}{2 g}= \\\frac{\left(C_{\mathrm{u}} \cdot u\right)_2-\left(C_{\mathrm{u}} \cdot u\right)_1}{g}+ \\\frac{1}{g Q}\left[\frac{\partial \omega}{\partial t}\left(\iiint\limits_V \frac{r C_{\mathrm{m}}}{\tan \beta} \mathrm{d} V\right)-\frac{1}{2} \frac{\partial}{\partial t} \iiint\limits_V \frac{C_{\mathrm{m}}^2}{\sin ^2 \beta} \mathrm{d} V\right] .\end{gathered}$ | (8) |
将流体微元体积关系式代入式(8),得到Htransient表示如下:
$\begin{aligned}&H_{\text {transient }}=\frac{\left(C_u \cdot u\right)_2-\left(C_u \cdot u\right)_1}{g}+ \\&\quad \frac{1}{g} \frac{\partial \omega}{\partial t} \int_{r_1}^{r_2} \frac{r}{\tan \beta \cdot \sin \gamma} \mathrm{d} r- \\&\frac{1}{g} \frac{\partial Q}{\partial t}\left(\frac{1}{2 \pi} \int_{r_1}^{r_2} \frac{1}{r b \psi \cdot \sin ^2 \beta \cdot \sin \gamma} \mathrm{d} r\right)= \\&H_{\text {steady }}+\frac{1}{g} \frac{\partial \omega}{\partial t} \int_{r_1}^{r_2} \frac{r}{\tan \beta \cdot \sin \gamma} \mathrm{d} r- \\&\frac{1}{g} \frac{\partial Q}{\partial t}\left(\frac{1}{2 \pi} \int_{r_1}^{r_2} \frac{1}{r b \psi \cdot \sin ^2 \beta \cdot \sin \gamma} \mathrm{d} r\right) .\end{aligned}$ | (9) |
式(9)表明,泵的瞬态扬程与稳态项扬程、由转速随时间变化引起的加速项扬程和由流量随时间变化引起的惯性项扬程有关。
1.2 管路系统阻力方程启动加速过程中,管路系统的阻力由管路摩擦损失及管路流体加速的压差组成:
$\Delta H=\varphi Q^2+\frac{1}{g} \frac{L}{A} \frac{\mathrm{d} Q}{\mathrm{d} t}=\lambda \cdot \frac{L}{D} \cdot \frac{v^2}{2 g}+\frac{1}{g} \frac{L}{A} \frac{\mathrm{d} Q}{\mathrm{d} t}.$ | (10) |
$H_{\text {steady }}=\Delta H=\varphi Q^2.$ | (11) |
$H_{\text {steady, } \mathrm{d}}=a_0+a_1 Q+a_2 Q^2+\cdots+a_6 Q^6.$ | (12) |
启动过程中,转速在给定时间内加速至设计转速。为建立预测模型,假设泵在启动过程中满足相似定律,则有如下相似换算公式:
$\frac{H_{\text {steady }}}{H_{\text {steady }, \mathrm{d}}}=\left(\frac{n}{n_{\mathrm{d}}}\right)^2.$ | (13) |
$H_{\text {steady }}=\left(\frac{n}{n_{\mathrm{d}}}\right)^2 \cdot\left(a_0+a_1 Q+a_2 Q^2+\cdots+a_6 Q^6\right).$ | (14) |
2 混流泵数值模拟方法2.1 混流泵及管路的几何模型混流泵的设计参数为:流量Qd=0.03 m3/s,转速nd=1 000 r/min,扬程Hd=1.8 m。混流泵的主要几何参数为:叶轮叶片数为5,导叶叶片数为6,泵进口直径为150 mm,泵出口直径为180 mm。混流泵及其循环管路如图 2所示。
![]() |
图 2 混流泵及循环管路系统的三维模型 |
图选项 |
2.2 网格划分及无关性验证对混流泵的叶轮和导叶采用Turbogrid软件生成结构化网格,对管路采用ICEM软件生成六面体结构化网格,对弯管及阀门生成非结构化网格。网格无关性验证结果如表 1所示。
表 1 网格无关性验证
方案 | 总网格数 | 扬程相对值 | 效率相对值 |
1 | 1 887 732 | 1.000 0 | 1.000 0 |
2 | 2 554 352 | 1.019 7 | 1.035 1 |
3 | 3 216 432 | 1.020 2 | 1.044 2 |
4 | 3 857 312 | 1.021 9 | 1.044 5 |
表选项
当网格总数达到3 216 432后,泵的扬程和效率变化不超过0.2%,满足网格无关性要求。因此,本文采用网格方案3开展研究。
2.3 数值模拟方法采用k-ω SST湍流模型进行稳态和瞬态启动过程数值模拟。壁面设置为无滑移条件,对流项的空间离散采用高分辨率格式,瞬态项的时间离散采用二阶隐式。
泵稳态特性计算中,计算域包括进口延长段、混流泵、出口延长段。泵瞬态特性计算中,计算域包括混流泵、管路、阀门和水箱。进口边界给定为总压条件,出口边界给定为质量流量。叶轮进口与进口延长段,叶轮出口与导叶之间的动静交界面为Frozen-Rotor。启动工况下,叶轮转速由0上升至设计转速的加速时间为0.2 s,计算总时长为1 s,时间步长为0.000 2 s。动静交界面为Transient Rotor-Stator。
3 结果与分析3.1 混流泵稳态特性曲线对混流泵不同流量下的稳态工况进行数值模拟,得到稳态扬程特性曲线,如图 3所示。混流泵在0.015~0.025 m3/s的小流量区,扬程存在马鞍区,这与比转速有关。同时采用6次函数对流量-扬程曲线进行拟合,如图中虚线所示,拟合后的残差平方和为0.034 4,说明拟合曲线与数值模拟结果吻合较好。
![]() |
图 3 混流泵扬程特性曲线及拟合结果 |
图选项 |
3.2 启动过程流量变化规律给定3组阀门开度A1、A2、A3,使泵在稳定运行工况下流量分别为0.8Qd、1.0Qd、1.5Qd。针对3组阀门开度,对启动过程混流泵的瞬态特性变化开展理论模型预测和数值模拟。
图 4为3种阀门开度下理论模型预测和数值模拟的流量变化曲线。结果表明:不同阀门开度下流量在加速初期快速增长,加速结束后缓慢增长并趋于稳定。小阀门开度A1下,数值模拟与理论模型预测的流量变化曲线几乎重合。随着阀门开度增大,两者在0.3 s后偏差增大,但在流量接近稳定阶段偏差减小。原因是理论预测模型中阻力系数为定值,而在实际流动中,阻力系数与流量和管道内的流动状态相关。
![]() |
图 4 3种阀门开度下流量变化曲线对比 |
图选项 |
3.3 启动过程扬程变化规律图 5为3种阀门开度下瞬态扬程式(9)中各项扬程的变化规律。结果表明,在转速加速阶段稳态项扬程的变化规律相同,在加速结束时达到最大值,随后迅速下降。在0.3 s后,随着阀门开度的增大,稳态项扬程开始逐渐下降,原因是阀门开度大,对应的流量大、扬程小。
![]() |
图 5 3种阀门开度下瞬态扬程中各项变化曲线 |
图选项 |
3种开度下,加速项扬程的变化规律一致,在转速加速阶段存在恒定的加速项扬程,原因是转速加速为线性变化规律,加速度为恒定值。在0.2 s加速结束后加速项扬程变为0,说明该项仅仅与启动加速度和叶片参数有关。
3种开度下,惯性项扬程在转速加速阶段的变化规律相同,在加速结束时达到最大值。阀门开度大,管路系统阻力小,流量上升快,因此惯性项扬程更大。
将稳态项扬程、加速项扬程和惯性项扬程3者相加得到理论模型预测的瞬态扬程,并与数值模拟的结果进行对比,3种阀门开度下的结果如图 6所示。结果表明,理论模型预测结果与数值模拟结果基本一致,尤其在转速加速阶段吻合,验证了本文理论预测模型的准确性。t=0.2 s后,转速保持稳定,理论模型预测扬程与数值模拟扬程都逐渐下降;A1开度下理论预测扬程下降并保持稳定,与数值模拟扬程的偏差先逐渐增大直至基本不变;A2开度下理论预测值扬程先下降后缓慢增长,与数值模拟扬程逐渐接近;A3开度下理论预测扬程先下降后又上升,再急剧下降,在t=0.62 s附近与数值模拟扬程产生交点。
![]() |
图 6 3种阀门开度下扬程变化曲线对比 |
图选项 |
理论模型预测扬程与数值模拟扬程之间存在偏差的主要原因是:1) 各项扬程的结果表明,加速项扬程和惯性项扬程相比稳态项扬程小,稳态项扬程是影响预测结果准确性的重要因素。本文中稳态项扬程是由不同工况下扬程进行拟合得到的,与实际启动过程中扬程存在偏差。2) 启动过程主要对应小流量区间,在此区间泵内流态不稳定,使得数值模拟结果与实际启动过程中扬程存在偏差。3) 由于流量与扬程的相关性,理论模型预测流量与数值模拟流量的偏差会传递给扬程。
4 结论本文通过理论推导建立了混流泵启动过程瞬态性能理论预测模型,并通过数值模拟方法计算了混流泵和管路系统的三维瞬态流动,主要结论如下:
1) 基于混流泵瞬态扬程方程和管路系统阻力方程,建立了混流泵启动过程瞬态性能理论预测模型,通过给定转速加速曲线,得到启动过程中流量和扬程随时间的变化规律。理论模型预测结果与数值模拟结果吻合较好,验证了本文理论预测模型的准确性。
2) 转速加速过程中,混流泵流量随转速增大而快速增长。转速加速结束后,流量缓慢增长并最终趋于稳定。
3) 混流泵启动过程中,瞬态扬程可分为稳态项扬程、加速项扬程和惯性项扬程。转速加速过程中,加速项扬程影响较大。转速加速结束后,惯性项扬程影响较大。
参考文献
[1] | TSUKAMOTO H, OHASHI H. Transient characteristics of a centrifugal pump during starting period[J]. Journal of Fluids Engineering, 1982, 104(1): 6-13. DOI:10.1115/1.3240859 |
[2] | LEFEBVRE P J, BARKER W P. Centrifugal pump performance during transient operation[J]. Journal of Fluids Engineering, 1995, 117(1): 123-128. DOI:10.1115/1.2816801 |
[3] | THANAPANDI P, PRASAD R. A quasi-steady performance prediction model for dynamic characteristics of a volute pump[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1994, 208(1): 47-58. DOI:10.1243/PIME_PROC_1994_208_008_02 |
[4] | THANAPANDI P, PRASAD R. Centrifugal pump transient characteristics and analysis using the method of characteristics[J]. International Journal of Mechanical Sciences, 1995, 37(1): 77-89. DOI:10.1016/0020-7403(95)93054-A |
[5] | 王乐勤, 吴大转, 郑水英. 混流泵瞬态水力性能试验研究[J]. 流体机械, 2003, 31(1): 1-3, 6. WANG L Q, WU D Z, ZHENG S Y. Experimental study on transient performance of a mixed-flow-pump[J]. Fluid Machinery, 2003, 31(1): 1-3, 6. DOI:10.3969/j.issn.1005-0329.2003.01.001 (in Chinese) |
[6] | 王乐勤, 吴大转, 郑水英. 混流泵开机过程瞬态水力性能的数值计算[J]. 流体机械, 2004, 32(1): 10-13. WANG L Q, WU D Z, ZHENG S Y. Numerical study on transient performance of mixed flow pump during starting period[J]. Fluid Machinery, 2004, 32(1): 10-13. (in Chinese) |
[7] | 胡征宇, 吴大转, 王乐勤. 离心泵快速启动过程的瞬态水力特性: 外特性研究[J]. 浙江大学学报(工学版), 2005, 39(5): 605-608, 622. HU Z Y, WU D Z, WANG L Q. Transient hydrodynamic performance of centrifugal pump during rapid starting period: Study of explicit characteristics[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(5): 605-608, 622. DOI:10.3785/j.issn.1008-973X.2005.05.001 (in Chinese) |
[8] | 吴大转, 焦磊, 王乐勤. 不同启动加速度下离心泵瞬态水力性能的试验研究[J]. 工程热物理学报, 2008, 29(1): 62-64. WU D Z, JIAO L, WANG L Q. Experimental study on transient performance of centrifugal pump under different starting acceleration[J]. Journal of Engineering Thermophysics, 2008, 29(1): 62-64. (in Chinese) |
[9] | 吴大转, 焦磊, 王乐勤. 离心泵启动过程瞬态空化特性的试验研究[J]. 工程热物理学报, 2008, 29(10): 1682-1684. WU D Z, JIAO L, WANG L Q. Experimental study on cavitation performance of a centrifugal pump during starting period[J]. Journal of Engineering Thermophysics, 2008, 29(10): 1682-1684. (in Chinese) |
[10] | LI Z F, WU D Z, WANG L Q, et al. Numerical simulation of the transient flow in a centrifugal pump during starting period[J]. Journal of Fluids Engineering, 2010, 132(8): 081102. DOI:10.1115/1.4002056 |
[11] | LI Z F, WU P, WU D Z, et al. Experimental and numerical study of transient flow in a centrifugal pump during startup[J]. Journal of Mechanical Science and Technology, 2011, 25(3): 749-757. DOI:10.1007/s12206-011-0107-7 |
[12] | 杨从新, 王斌. 离心泵在启动阶段的瞬态三维数值模拟[J]. 排灌机械工程学报, 2010, 28(2): 122-126. YANG C X, WANG B. 3-D numerical simulation on transient characteristics of centrifugal pump during starting period[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(2): 122-126. (in Chinese) |
[13] | 郭宪军, 陈红勋, 朱兵. 离心泵启动过程的数值模拟[J]. 上海大学学报(自然科学版), 2012, 18(3): 288-292. GUO X J, CHEN H X, ZHU B. Numerical simulation for centrifugal pump during starting period[J]. Journal of Shanghai University (Natural Science), 2012, 18(3): 288-292. (in Chinese) |
[14] | LI W, ZHANG Y, SHI W D, et al. Numerical simulation of transient flow field in a mixed-flow pump during starting period[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018, 28(4): 927-942. |
[15] | LI W, JI L L, SHI W D, et al. Particle image velocimetry experiment of the inlet flow field in a mixed-flow pump during the startup period[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020, 234(3): 300-314. |
[16] | 张德胜, 顾琦, 陈宗贺, 等. 混流泵启动过程瞬态空化特性的数值模拟和实验研究[C]// 第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集. 中国: 海洋出版社, 2019: 526-538. ZHANG D S, GU Q, CHEN Z H, et al. Numerical simulation and experimental study on transient cavitation characteristics of mixed-flow pump startup process[C]// Proceeding of the 30th National Conference on Hydrodynamics & 15th National Congress on Hydrodynamics. China: China Ocean Press, 2019: 526-528. (in Chinese) |
[17] | 陈宗贺, 施卫东, 张德胜, 等. 混流泵启动过程空化特性的试验研究[J]. 排灌机械工程学报, 2019, 37(9): 758-762. CHEN Z H, SHI W D, ZHANG D S, et al. Experimental study on cavitation characteristics of mixed-flow pump during startup[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(9): 758-762. (in Chinese) |