

1. 清华大学 电子工程系, 北京国家信息科学技术研究中心, 北京 100084;;
2. 中国工程物理研究院, 绵阳 621000
收稿日期:2020-12-16
基金项目:国家自然科学基金面上项目(61973181); 清华大学自主科研计划(2018Z05JZY004)
作者简介:张欣然(1993—), 女, 博士研究生
通讯作者:李洪, 副教授, E-mail:lihongee@tsinghua.edu.cn
摘要:矢量跟踪技术是卫星导航领域的关键技术之一。随着欺骗干扰对卫星导航安全的威胁日益严峻, 研究欺骗干扰对矢量接收机的影响对于提高矢量跟踪技术抗欺骗干扰能力有重要意义。该文研究了欺骗干扰对3种典型矢量跟踪环路的影响, 推导了欺骗干扰引起的跟踪误差均值, 建立了环路失锁条件的表达式, 并利用信号源模拟器和软件接收机对分析结果进行了验证。研究结果表明, 欺骗干扰能够导致非零均值的信号跟踪误差, 降低环路的跟踪性能, 甚至引起环路失锁。矢量接收机可以根据该特性进行反欺骗。
关键词:全球导航卫星系统欺骗干扰矢量跟踪一致性
Influence of spoofing interference on GNSS vector tracking loops
ZHANG Xinran1, LI Hong1


1. Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. China Academy of Engineering Physics, Mianyang 621000, China
Abstract: Vector tracking technology is one of the key technologies of satellite navigation. As the threat of spoofing interference to satellite navigation security is increasing enormously, the influence of spoofing interference on vector receivers must be better understood to improve the anti-spoofing capability of vector tracking technology. This paper focuses on the influence of spoofing interference on three typical vector tracking loops. This study derives the mean tracking error caused by spoofing interference and the loss of lock conditions in the tracking loops. The analysis results were verified using a signal source simulator and a software receiver. The results show that spoofing interference can lead to non-zero mean tracking errors, reduce loop tracking accuracy, and even cause loop lock loses. Vector receivers can use this feature to improve anti-spoofing abilities.
Key words: global navigation satellite systemsspoofing interferencevector trackingconsistency
全球导航卫星系统(global navigation satellite system, GNSS)接收机的性能与其结构相关。目前,商用接收机大多采用标量跟踪结构。标量跟踪结构利用多个信号通道独立跟踪处理信号,再联合所有信号的导航参数进行接收机的状态估计。不同于标量跟踪结构,矢量跟踪结构不对信号进行独立跟踪,而是通过Kalman滤波器联合跟踪所有信号。相对来说,矢量跟踪结构具有更好的跟踪灵敏度[1-2]和动态特性[3],且在抗压制干扰[4]和抑制多径[5]等方面也具有性能优势。因此,矢量跟踪技术成为了当前卫星导航领域具有广阔发展和应用前景的关键技术之一[6]。
另一方面,近十多年来兴起的欺骗干扰因为隐蔽性强、潜在危害性高,已经成为GNSS接收机面临的重要威胁[7]。欺骗干扰通过产生与GNSS信号结构特征相同、导航参数不同的信号,并使其取代GNSS信号被接收机跟踪处理,能够误导接收机的导航状态估计[6]。此外,对于矢量接收机,欺骗干扰还能够通过影响接收机的状态估计,对所有信号的跟踪产生影响。目前,欺骗干扰对矢量跟踪环路的影响尚未被深入讨论,本文将围绕这一问题展开研究。
本文以矢量延迟锁定环[8](vector delay lock loop, VDLL)、矢量锁频环[9](vector frequency lock loop, VFLL)及矢量锁频环辅助的锁相环[10](vector frequency lock loop assisted phase lock loop, VFLL-A-PLL)为对象,研究欺骗干扰对矢量跟踪环路的影响。本文通过分析这3种矢量跟踪环路在典型欺骗干扰场景中的稳定状态公式,指出欺骗干扰能够通过破坏跟踪信号的一致性[11],导致信号跟踪误差非零均值,降低环路的跟踪性能,甚至引起环路失锁。此外,本文还推导了跟踪误差均值,建立了环路失锁条件的表达式。通过在基于GNSS信号源模拟器搭建的欺骗干扰场景中进行测试,验证了分析结果。
1 信号和系统模型本文基于一种无重叠相关峰的典型欺骗干扰场景进行分析,该场景能够直观体现欺骗干扰对标量和矢量跟踪环路影响的差异。在典型欺骗干扰场景中,GNSS接收机跟踪处理的一组信号分别对应不同卫星,信号个数为N,其中部分或全部信号是欺骗信号。图 1是VDLL、VFLL和VFLL-A-PLL这3种矢量跟踪环路的示意图,它们均通过鉴别器输出更新Kalman滤波器,再由Kalman滤波器输出驱动数控振荡器(numerically controlled oscillator, NCO)生成本地信号。图中,S表示信号,C、f和φ分别表示伪码相位、载波Doppler频移和载波相位,下标n对应信号通道编号,上标t和l分别对应跟踪信号和本地信号。ΔCn、Δfn和Δφn表示信号跟踪误差,定义如下:
$\left\{\begin{array}{l}\Delta C_{n}=C_{n}^{\mathrm{t}}-C_{n}^{\mathrm{l}}, \\\Delta f_{n}=f_{n}^{\mathrm{t}}-f_{n}^{\mathrm{l}}, \\\Delta \varphi_{n}=\varphi_{n}^{\mathrm{t}}-\varphi_{n}^{\mathrm{l}} .\end{array}\right.$ | (1) |
![]() |
图 1 3种矢量跟踪环路示意图 |
图选项 |
在欺骗干扰场景中,Snt的伪码相位Cnt和载波Doppler频移fnt可以表示为
$\left\{\begin{array}{l}C_{n}^{\mathrm{t}}=C_{n}^{\mathrm{r}}+C_{n}^{\mathrm{s}}, \\f_{n}^{\mathrm{t}}=f_{n}^{\mathrm{r}}+f_{n}^{\mathrm{s}} .\end{array}\right.$ | (2) |
Snt和Snl的在同相支路上的相干积分结果为IE, n、IP, n和IL, n,在正交支路上的相干积分结果为QE, n、QP, n和QL, n,其中下标E、P和L分别表示超前、即时和滞后相关器。受噪声的影响,相干积分结果可认为服从Gauss分布[12]。表 1总结了相干积分结果的均值和标准差,其中,fa为采样频率,T为相干积分时间,An为Snt的信号幅度,d为相关器间距,σ2为噪声的方差。此外,Snt的载噪比(C/N0)n可以表示为
$\left(C / N_{0}\right)_{n}=\frac{A_{n}^{2} f_{\mathrm{a}}}{4 \sigma^{2}}.$ | (3) |
相干积分结果 | 均值 | 标准差 |
IE, n | (faT/2)An(1-d+ΔCn)sinc(ΔfnT)cos(Δφn) | |
QE, n | (faT/2)An(1-d+ΔCn)sinc(ΔfnT)sin(Δφn) | |
IP, n | (faT/2)An(1-ΔCn)sinc(ΔfnT)cos(Δφn) | |
QP, n | (faT/2)An(1-ΔCn)sinc(ΔfnT)sin(Δφn) | |
IL, n | (faT/2)An(1-d-ΔCn)sinc(ΔfnT)cos(Δφn) | |
QL, n | (faT/2)An(1-d-ΔCn)sinc(ΔfnT)sin(Δφn) |
表选项
利用相干积分结果,DLL、FLL和PLL鉴别器可获得ΔCn、Δfn和Δφn的估计值,分别记为
$\left\{\begin{array}{l}\varepsilon C_{n}=\Delta \hat{C}_{n}-\Delta C_{n}, \\\varepsilon f_{n}=\Delta \hat{f}_{n}-\Delta f_{n}, \\\varepsilon \varphi_{n}=\Delta \hat{\varphi}_{n}-\Delta \varphi_{n} .\end{array}\right.$ | (4) |
$\begin{gathered}\boldsymbol{\alpha}_{\mathrm{u}}=\left[\begin{array}{l}\boldsymbol{\alpha}_{1} \\\boldsymbol{\alpha}_{2}\end{array}\right], \\\boldsymbol{\alpha}_{1}=\left[\begin{array}{llll}x_{\mathrm{u}} & y_{\mathrm{u}} & z_{\mathrm{u}} & \tau_{\mathrm{u}}\end{array}\right]^{\mathrm{T}}, \\\boldsymbol{\alpha}_{2}=\left[\begin{array}{llll}v_{\mathrm{u}}^{x} & v_{\mathrm{u}}^{y} & v_{\mathrm{u}}^{z} & b_{\mathrm{u}}\end{array}\right]^{\mathrm{T}} .\end{gathered}$ | (5) |
$\begin{gathered}\boldsymbol{b}=\left[\begin{array}{l}\boldsymbol{b}_{\mathrm{D}} \\\boldsymbol{b}_{\mathrm{F}}\end{array}\right], \\\boldsymbol{b}_{\mathrm{D}}=\left[\begin{array}{llll}C_{1} & C_{2} & \cdots & C_{N}\end{array}\right]^{\mathrm{T}}, \\\boldsymbol{b}_{\mathrm{F}}=\left[\begin{array}{llll}f_{1} & f_{2} & \cdots & f_{N}\end{array}\right]^{\mathrm{T}} .\end{gathered}$ | (6) |
$\left\{\begin{array}{l}C_{n}=C_{n}^{\mathrm{l}}+\Delta \hat{C}_{n}, \\f_{n}=f_{n}^{\mathrm{l}}+\Delta \hat{f}_{n}.\end{array}\right.$ | (7) |
$\left\{\begin{array}{l}C_{n}=C_{n}^{\mathrm{r}}+C_{n}^{\mathrm{s}}+\varepsilon C_{n}, \\f_{n}=f_{n}^{\mathrm{r}}+f_{n}^{\mathrm{s}}+\varepsilon f_{n} .\end{array}\right.$ | (8) |
$\left\{\begin{array}{l}\boldsymbol{b}_{\mathrm{D}}=h_{\mathrm{D}}\left(\boldsymbol{\alpha}_{\mathrm{u}}\right) ,\\\boldsymbol{b}_{\mathrm{F}}=h_{\mathrm{F}}\left(\boldsymbol{\alpha}_{\mathrm{u}}\right).\end{array}\right.$ | (9) |
$\begin{gathered}\boldsymbol{H}=\frac{\partial \boldsymbol{b}}{\partial \boldsymbol{\alpha}_{\mathrm{u}}^{\mathrm{T}}}=\left[\begin{array}{c}\partial \boldsymbol{b}_{\mathrm{D}} / \partial \boldsymbol{\alpha}_{\mathrm{u}}^{\mathrm{T}} \\\partial \boldsymbol{b}_{\mathrm{F}} / \partial \boldsymbol{\alpha}_{\mathrm{u}}^{\mathrm{T}}\end{array}\right]=\left[\begin{array}{c}\boldsymbol{H}_{\mathrm{D}} \\\boldsymbol{H}_{\mathrm{F}}\end{array}\right]= \\{\left[\begin{array}{cc}\partial \boldsymbol{b}_{\mathrm{D}} / \partial \boldsymbol{\alpha}_{1}^{\mathrm{T}} & \partial \boldsymbol{b}_{\mathrm{D}} / \partial \boldsymbol{\alpha}_{2}^{\mathrm{T}} \\\partial \boldsymbol{b}_{\mathrm{F}} / \partial \boldsymbol{\alpha}_{1}^{\mathrm{T}} & \partial \boldsymbol{b}_{\mathrm{F}} / \partial \boldsymbol{\alpha}_{2}^{\mathrm{T}}\end{array}\right]=\left[\begin{array}{cc}\boldsymbol{H}_{\mathrm{D} 1} & \boldsymbol{H}_{\mathrm{D} 2} \\\boldsymbol{H}_{\mathrm{F} 1} & \boldsymbol{H}_{\mathrm{F} 2}\end{array}\right] .}\end{gathered}$ | (10) |
$\left\{\begin{array}{l}\boldsymbol{H}_{\mathrm{D} 2}={\bf{0}} ,\\\boldsymbol{H}_{\mathrm{F} 1} \approx {\bf{0}}.\end{array}\right.$ | (11) |
由式(8)可知,Cn和fn与Cnr和fnr存在差异。因此,当系统稳定时,估计的接收机状态
$\hat{\boldsymbol{\alpha}}_{\rm u}=\overline{\boldsymbol{\alpha}}_{\rm u}+\delta \boldsymbol{\alpha}_{\rm u}+\varepsilon \boldsymbol{\alpha}_{\rm u} .$ | (12) |
$\delta \boldsymbol{\alpha}_{\rm u} \approx\left(\boldsymbol{H}^{\mathrm{T}} \boldsymbol{H}\right)^{-1} \boldsymbol{H}^{\mathrm{T}}\left[\begin{array}{l}\boldsymbol{C}^{\mathrm{s}} \\\boldsymbol{f}^{\mathrm{s}}\end{array}\right].$ | (13) |
$E\left(\varepsilon \boldsymbol{\alpha}_{\mathrm{u}}\right) \approx\left(\boldsymbol{H}^{\mathrm{T}} \boldsymbol{H}\right)^{-1} \boldsymbol{H}^{\mathrm{T}}\left[\begin{array}{l}E(\varepsilon \boldsymbol{C}) \\E(\varepsilon \boldsymbol{f})\end{array}\right].$ | (14) |
$\delta \boldsymbol{\alpha}_{\mathrm{u}} \approx\left[\begin{array}{c}\left(\boldsymbol{H}_{\mathrm{D} 1}^{\mathrm{T}} \boldsymbol{H}_{\mathrm{D} 1}\right)^{-1} \boldsymbol{H}_{\mathrm{D1}}^{\mathrm{T}} \boldsymbol{C}^{s} \\\left(\boldsymbol{H}_{\mathrm{F} 2}^{\mathrm{T}} \boldsymbol{H}_{\mathrm{F} 2}\right)^{-1} \boldsymbol{H}_{\mathrm{F} 2}^{\mathrm{T}} \boldsymbol{f}^{s}\end{array}\right],$ | (15) |
$E\left(\varepsilon \boldsymbol{\alpha}_{\mathrm{u}}\right) \approx\left[\begin{array}{c}\left(\boldsymbol{H}_{\mathrm{D} 1}^{\mathrm{T}} \boldsymbol{H}_{\mathrm{D} 1}\right)^{-1} \boldsymbol{H}_{\mathrm{D1}}^{\mathrm{T}} E(\varepsilon \boldsymbol{C W}) \\\left(\boldsymbol{H}_{\mathrm{F} 2}^{\mathrm{T}} \boldsymbol{H}_{\mathrm{F} 2}\right)^{-1} \boldsymbol{H}_{\mathrm{F} 2}^{\mathrm{T}} E(\varepsilon \boldsymbol{f})\end{array}\right].$ | (16) |
2 欺骗干扰的影响分析本节将通过对3种典型矢量跟踪环路的稳定状态进行分析,得出欺骗干扰对矢量跟踪环路的影响方式和影响程度。为了简化问题,分析VDLL时,假定采用FLL或PLL进行载波跟踪[8];分析VFLL和VFLL-A-PLL时,假定采用DLL进行伪码跟踪。
2.1 对VDLL的影响分析2.1.1 VDLL稳态分析对于VDLL,Kalman滤波器估计的伪码相位差
$\left[\begin{array}{c}\Delta \widetilde{C}_{1} \\\Delta \widetilde{C}_{2} \\\vdots \\\Delta \widetilde{C}_{N}\end{array}\right]=\left[\begin{array}{c}\Delta \hat{C}_{1} \\\Delta \hat{C}_{2} \\\vdots \\\Delta \hat{C}_{N}\end{array}\right]+h_{\mathrm{D}}\left(\hat{\boldsymbol{\alpha}}_{\mathrm{u}}\right)+H_{\mathrm{D}} \Delta \dot{\boldsymbol{\alpha}}_{\mathrm{u}}-\boldsymbol{b}_{\mathrm{D}}.$ | (17) |
$\left[\begin{array}{c}E\left(\Delta \hat{C}_{1}\right) \\E\left(\Delta \hat{C}_{2}\right) \\\vdots \\E\left(\Delta \hat{C}_{N}\right)\end{array}\right] \approx E\left(\boldsymbol{b}_{\mathrm{D}}\right)-E\left(h_{\mathrm{D}}\left(\hat{\boldsymbol{\alpha}}_{\mathrm{u}}\right)\right).$ | (18) |
下面进一步讨论存在欺骗干扰的情况。结合式(12),对hD(
$\begin{gathered}h_{\mathrm{D}}\left(\hat{\boldsymbol{\alpha}}_{\mathrm{u}}\right)=h_{\mathrm{D}}\left(\overline{\boldsymbol{\alpha}}_{\mathrm{u}}+\delta \boldsymbol{\alpha}_{\mathrm{u}}+\varepsilon \boldsymbol{\alpha}_{\mathrm{u}}\right) \approx \\h_{\mathrm{D}}\left(\overline{\boldsymbol{\alpha}}_{\bf{u}}\right)+\boldsymbol{H}_{\mathrm{D}}\left(\delta \boldsymbol{\alpha}_{\mathrm{u}}+\varepsilon \boldsymbol{\alpha}_{\mathrm{u}}\right) .\end{gathered}$ | (19) |
对式(19)左右两边求均值,可得
$E\left(h_{\mathrm{D}}\left(\hat{\boldsymbol{\alpha}}_{\mathrm{u}}\right)\right) \approx h_{\mathrm{D}}\left(\overline{\boldsymbol{\alpha}}_{\mathrm{u}}\right)+\boldsymbol{H}_{\mathrm{D}} \delta \boldsymbol{\alpha}_{\mathrm{u}}+\boldsymbol{H}_{\mathrm{D}} E\left(\varepsilon \boldsymbol{\alpha}_{\mathrm{u}}\right) .$ | (20) |
$h_{\mathrm{D}}\left(\overline{\boldsymbol{\alpha}}_{\mathrm{u}}\right)=\left[\begin{array}{llll}C_{1}^{\mathrm{r}} & C_{2}^{\mathrm{r}} & \cdots & C_{N}^{\mathrm{r}}\end{array}\right]^{\mathrm{T}}.$ | (21) |
$\boldsymbol{H}_{\mathrm{D}} \delta \boldsymbol{\alpha}_{\mathrm{u}} \approx \boldsymbol{W}_{\mathrm{D}} \boldsymbol{C}^{\mathrm{s}} .$ | (22) |
$\boldsymbol{H}_{\mathrm{D}} E\left(\varepsilon \alpha_{\mathrm{u}}\right) \approx \boldsymbol{W}_{\mathrm{D}} E(\varepsilon \boldsymbol{C}).$ | (23) |
$\boldsymbol{W}_{\mathrm{D}}=\boldsymbol{H}_{\mathrm{D} 1}\left(\boldsymbol{H}_{\mathrm{D} 1}^{\mathrm{T}} \boldsymbol{H}_{\mathrm{D} 1}\right)^{-1} \boldsymbol{H}_{\mathrm{D} 1}^{\mathrm{T}}.$ | (24) |
$\left[\begin{array}{c}E\left(\Delta \hat{C}_{1}\right) \\E\left(\Delta \hat{C}_{2}\right) \\\vdots \\E\left(\Delta \hat{C}_{N}\right)\end{array}\right] \approx\left(\boldsymbol{I}-\boldsymbol{W}_{\mathrm{D}}\right)\left(\boldsymbol{C}^{\mathrm{s}}+E(\varepsilon \boldsymbol{C})\right).$ | (25) |
2.1.2 影响程度分析本文以一种典型的非相干超前减滞后幅值DLL鉴别方法为例,进一步分析伪码相位跟踪误差均值E(ΔCn)。所采用的DLL鉴别方法如下[14]:
$\Delta \hat{C}_{n}=(1-d) \frac{1-w_{n}}{1+w_{n}}.$ | (26) |
$w_{n}=\frac{\sqrt{I_{\mathrm{L}, n}^{2}+Q_{\mathrm{L}, n}^{2}}}{\sqrt{I_{\mathrm{E}, n}^{2}+Q_{\mathrm{E}, n}^{2}}} .$ | (27) |
$\begin{gathered}I_{\mathrm{E}, n}(t)=\frac{f_{\mathrm{a}} T A_{n}}{2} \cdot \\{\left[\left(1-d+E\left(\Delta C_{n}\right)+\delta\left(\Delta C_{n}(t)\right)\right) \cdot\right.} \\\operatorname{sinc}\left(\left(E\left(\Delta f_{n}\right)+\delta\left(\Delta f_{n}(t)\right)\right) T\right) \cdot \\\left.\cos \left(E\left(\Delta \varphi_{n}\right)+\delta\left(\Delta \varphi_{n}(t)\right)\right)+\kappa(t)\right] .\end{gathered}$ | (28) |
$\sigma(\kappa)=\frac{\sqrt{f_{\mathrm{a}} T \sigma^{2} / 2}}{\left(f_{\mathrm{a}} T / 2\right) A_{n}}=\frac{1}{\sqrt{2 T\left(C / N_{0}\right)_{n}}} .$ | (29) |
$\begin{gathered}E\left(I_{\mathrm{E}, n}\right) \approx\left(f_{\mathrm{a}} T / 2\right) A_{n}\left(1-d+E\left(\Delta C_{n}\right)\right) \cdot \\\operatorname{sinc}\left(E\left(\Delta f_{n}\right) T\right) \cos \left(E\left(\Delta \varphi_{n}\right)\right),\end{gathered}$ | (30) |
$\sigma\left(I_{\mathrm{E}, n}\right) \approx \sqrt{f_{\mathrm{a}} T \sigma^{2} / 2}.$ | (31) |
$\begin{gathered}p_{n}\left(w_{n}\right) \approx \frac{2 w_{n}}{\left(w_{n}^{2}+1\right)^{2}} \cdot \exp \left(-\frac{a_{n, 1}^{2} w_{n}^{2}+a_{n, 2}^{2}}{2\left(w_{n}^{2}+1\right)}\right) \cdot \\\left(\left(1+\frac{a_{n, 1}^{2}+a_{n, 2}^{2} w_{n}^{2}}{2\left(w_{n}^{2}+1\right)}\right) \cdot I_{0}\left(\frac{a_{n, 1} a_{n, 2} w_{n}}{w_{n}^{2}+1}\right)+\right. \\\left.\left(\frac{a_{n, 1} a_{n, 2} w_{n}}{w_{n}^{2}+1}\right) \cdot I_{1}\left(\frac{a_{n, 1} a_{n, 2} w_{n}}{w_{n}^{2}+1}\right)\right),\end{gathered}$ | (32) |
$\begin{gathered}a_{n, 1}=\sqrt{2 T\left(C / N_{0}\right)_{n}} \cdot \\\left(1-d+E\left(\Delta C_{n}\right)\right) \operatorname{sinc}\left(E\left(\Delta f_{n}\right) T\right),\end{gathered}$ |
$\begin{gathered}a_{n, 2}=\sqrt{2 T\left(C / N_{0}\right)_{n}}\cdot \\\left(1-d-E\left(\Delta C_{n}\right)\right) \operatorname{sinc}\left(E\left(\Delta f_{n}\right) T\right).\end{gathered}$ |
$\begin{gathered}E\left(\Delta \hat{C}_{n}\right) \approx \int\left((1-d) \frac{1-w_{n}}{1+w_{n}} p_{n}\left(w_{n}\right)\right) \mathrm{d} w_{n} \approx \\\gamma_{\text {DLL }}\left(E\left(\Delta C_{n}\right),\left(C / N_{0}\right)_{n}\right) .\end{gathered}$ | (33) |
联合式(4)、(25)和(33)可得
$\begin{gathered}\boldsymbol{W}_{\mathrm{D}}\left[\begin{array}{cc}\gamma_{\mathrm{DLL}}\left(E\left(\Delta C_{1}\right),\right. & \left.\left(C / N_{0}\right)_{1}\right)-E\left(\Delta C_{1}\right) \\\gamma_{\mathrm{DLL}}\left(E\left(\Delta C_{2}\right),\right. & \left.\left(C / N_{0}\right)_{2}\right)-E\left(\Delta C_{2}\right) \\\vdots & \\\gamma_{\mathrm{DLL}}\left(E\left(\Delta C_{N}\right),\right. & \left.\left(C / N_{0}\right)_{N}\right)-E\left(\Delta C_{N}\right)\end{array}\right]+ \\{\left[\begin{array}{c}E\left(\Delta C_{1}\right) \\E\left(\Delta C_{2}\right) \\\vdots \\E\left(\Delta C_{N}\right)\end{array}\right] \approx\left(\boldsymbol{I}-\boldsymbol{W}_{\mathrm{D}}\right) \boldsymbol{C}^{\mathrm{s}} .}\end{gathered}$ | (34) |
如果采用矢量载波环VFLL或VFLL-A-PLL,节2.2和2.3的分析会证明,当跟踪信号的载波Doppler频移不一致时,VFLL中的E(Δfn)≠0,而VFLL-A-PLL中的E(Δfn)=0。因此,对于VFLL,载波Doppler频移不一致能够通过E(Δfn)影响pn(wn),从而对γDLL(·)产生影响,最终影响到E(ΔCn)。但是,从式(32)中可以得出,E(Δfn)和载噪比对pn(wn)的影响是相似的。载波Doppler频移不一致能够影响E(ΔCn),但是不能决定E(ΔCn)≠0。因此,在对VDLL分析时选择标量载波环,不会对分析结论产生影响。
2.2 对VFLL的影响分析对于VFLL,Kalman滤波器估计的载波Doppler频移差
$\left[\begin{array}{c}\Delta \widetilde{f}_{1} \\\Delta \widetilde{f}_{2} \\\vdots \\\Delta \widetilde{f}_{N}\end{array}\right]=\left[\begin{array}{c}\Delta \hat{f}_{1} \\\Delta \hat{f}_{2} \\\vdots \\\Delta \hat{f}_{N}\end{array}\right]+h_{\mathrm{F}}\left(\hat{\boldsymbol{\alpha}}_{u}\right)+\boldsymbol{H}_{\mathrm{F}} \Delta \hat{\boldsymbol{\alpha}}_{u}-\boldsymbol{b}_{\mathrm{F}} .$ | (35) |
与节2.1.1分析类似,可以得到典型欺骗干扰场景中VFLL的稳定状态公式:
$\left[\begin{array}{c}E\left(\Delta \hat{f}_{1}\right) \\E\left(\Delta \hat{f}_{2}\right) \\\vdots \\E\left(\Delta \hat{f}_{N}\right)\end{array}\right] \approx\left(\boldsymbol{I}-\boldsymbol{W}_{\mathrm{F}}\right)\left(\boldsymbol{f}^{\mathrm{s}}+E(\varepsilon \boldsymbol{f})\right).$ | (36) |
$\boldsymbol{W}_{\mathrm{F}}=\boldsymbol{H}_{\mathrm{F} 2}\left(\boldsymbol{H}_{\mathrm{F} 2}^{\mathrm{T}} \boldsymbol{H}_{\mathrm{F} 2}\right)^{-1} \boldsymbol{H}_{\mathrm{F} 2}^{\mathrm{T}} .$ | (37) |
进一步,通过类似节2.1.2的分析可得
$\begin{gathered}\boldsymbol{W}_{\mathrm{F}}\left[\begin{array}{c}\gamma_{\mathrm{FLL}}\left(E\left(\Delta f_{1}\right),\left(C / N_{0}\right)_{1}\right)-E\left(\Delta f_{1}\right) \\\gamma_{\mathrm{FLL}}\left(E\left(\Delta f_{2}\right),\left(C / N_{0}\right)_{2}\right)-E\left(\Delta f_{2}\right) \\\vdots \\\gamma_{\mathrm{FLL}}\left(E\left(\Delta f_{N}\right),\left(C / N_{0}\right)_{N}\right)-E\left(\Delta f_{N}\right)\end{array}\right]+ \\{\left[\begin{array}{c}E\left(\Delta f_{1}\right) \\E\left(\Delta f_{2}\right) \\\vdots \\E\left(\Delta f_{N}\right)\end{array}\right] \approx\left(\boldsymbol{I}-\boldsymbol{W}_{F}\right) \boldsymbol{f}^{\rm s} .}\end{gathered}$ | (38) |
2.3 对VFLL-A-PLL的影响分析VFLL不能锁定载波相位,而VFLL-A-PLL能够同时锁定信号的载波频率和载波相位[10]。图 1中,VFLL-A-PLL和VFLL的主要区别是:
$\Delta \varphi_{n, \mathrm{PLL}}={\rm{ \mathsf{ π} }} T \cdot \Delta \widetilde{f}_{n}+\Delta \hat{\varphi}_{n}.$ | (39) |
$\left[\begin{array}{c}E\left(\Delta \hat{\varphi}_{1}\right) \\E\left(\Delta \hat{\varphi}_{2}\right) \\\vdots \\E\left(\Delta \hat{\varphi}_{\mathrm{N}}\right)\end{array}\right] \approx {\rm{ \mathsf{ π} }} T \cdot\left(\boldsymbol{I}-\boldsymbol{W}_{\mathrm{F}}\right) \boldsymbol{f}^{\rm s} .$ | (40) |
进一步,通过类似节2.1.2的分析可得
$\left[\begin{array}{cc}\gamma_{\mathrm{PLL}}\left(E\left(\Delta \varphi_{1}\right),\ \left(C / N_{0}\right)_{1}\right) \\\gamma_{\mathrm{PLL}}\left(E\left(\Delta \varphi_{2}\right),\ \left(C / N_{0}\right)_{2}\right) \\\vdots \\\gamma_{\mathrm{PLL}}\left(E\left(\Delta \varphi_{N}\right),\ \left(C / N_{0}\right)_{N}\right)\end{array}\right] \approx {\rm{ \mathsf{ π} }} T \cdot\left(\boldsymbol{I}-\boldsymbol{W}_{\mathrm{F}}\right) \boldsymbol{f}^{\mathrm{s}} .$ | (41) |
综上所述,欺骗干扰导致的跟踪信号伪码不一致主要影响VDLL,载波Doppler频移不一致主要影响VFLL和VFLL-A-PLL,如表 2所示。
表 2 跟踪信号不一致对矢量跟踪环路的影响
跟踪信号不一致 | 矢量跟踪环路 | 影响 |
伪码不一致 | VDLL | E(ΔCn)≠0 |
载波Doppler频移不一致 | VFLL | E(Δfn)≠0 |
VFLL-A-PLL | E(Δφn)≠0 |
表选项
典型欺骗干扰场景中不存在重叠相关峰,各信号通道仅跟踪处理一个信号。而在诱导式欺骗场景中[16],对应同一卫星的真实信号和欺骗信号的相关峰可能重叠,这时它们将共同影响跟踪环路。对于诱导式欺骗场景中的矢量跟踪环路,跟踪误差均值会同时受到跟踪信号不一致及相关峰重叠的影响,因此与典型欺骗干扰场景中的结果存在差异。但是,表 2中的结论可以推广到任意欺骗干扰场景中。
3 矢量跟踪环路失锁条件分析当跟踪误差超过门限值时,环路将失去对信号的锁定[16]。节2的分析表明,欺骗干扰能够增加环路跟踪误差均值,从而引起矢量跟踪环路失锁。本节将进一步对矢量跟踪环路失锁条件进行分析。
标量码环DLL的跟踪门限为[14]
$3 \sigma_{\mathrm{e}, \text { DLL}, n}+R_{\mathrm{e}, \text { DLL}, n} \leqslant d .$ | (42) |
$\left|E\left(\Delta C_{n}\right)\right|+3 \sigma_{\mathrm{e}, \text { VDLL }, n}+R_{\mathrm{e}, \text { VDLL }, n} \leqslant d.$ | (43) |
$\left|E\left(\Delta C_{n}\right)\right|>d-3 \sigma_{\mathrm{e}, \mathrm{VDLL}, n}-R_{\mathrm{e}, \mathrm{VDLL}, n}.$ | (44) |
类似地,欺骗干扰引起VFLL和VFLL-A-PLL失锁的条件,可以分别表示为:
$\left|E\left(\Delta f_{n}\right)\right|>f_{\mathrm{lm}}-3 \sigma_{\mathrm{e}, \text { VFLL }, n}-R_{\mathrm{e}, \text { VFLL, } n .}$ | (45) |
${\left|E\left(\Delta \varphi_{n}\right)\right|>\varphi_{\mathrm{lm}}-3 \sigma_{\mathrm{e}, \text { VFLL-A-PLL }, n}-R_{\mathrm{e}, \text { VFLL-A-PLL }, n} .}$ | (46) |
4 仿真验证仿真装置包括GNSS信号源模拟器、信号存储器和GNSS软件接收机。其中,信号源模拟器能够根据星历信息及预设的接收机状态和时间来模拟信号,并能够人为调节信号的传播时延(伪码相位)和载波Doppler频移等导航参数。信号源模拟器产生的信号经信号存储器采样存储后,再由软件接收机进行处理。在本文的仿真测试中,N=7,信号通道1到7分别跟踪处理PRN 2、PRN 12、PRN 13、PRN 17、PRN 20、PRN 23和PRN 28信号。此外,d设为0.5码片,T设为1 ms。
为了更灵活地配置欺骗干扰场景,本文仿真测试所采用的信号均由信号源模拟器产生,并根据导航参数是否经过篡改分为欺骗信号和真实信号。尽管仿真测试中的真实信号并非来自实际卫星,但由于其导航参数与GNSS信号一致,这种仿真方式是合理的。另外,在实际场景中由于卫星的俯仰角不同,各信号的载噪比之间存在差异。但是,因为载噪比是否相等对本文所验证的结论不会产生影响,所以在后续仿真测试中将所有信号设置为相同载噪比。
4.1 欺骗干扰的影响测试本节对标量和矢量跟踪环路在典型欺骗干扰场景中的跟踪误差进行对比。PRN 2、PRN 12和PRN 23是欺骗信号,其余是真实信号,所有信号的载噪比均为50 dB·Hz,3个欺骗信号的欺骗码相位分别为0.3、-0.5和0.4码片,欺骗Doppler频移分别为200、100和-250 Hz。软件接收机对这组信号进行了3次独立的测试,每次测试所采用的跟踪环路设置如表 3所示,测试结果如图 2到4所示。
表 3 跟踪环路设置
测试 | 前1 s | 后1 s |
1 | DLL + PLL | VDLL + PLL |
2 | DLL + FLL | DLL + VFLL |
3 | DLL + PLL | DLL + VFLL-A-PLL |
表选项
![]() |
图 2 欺骗干扰场景中的伪码相位跟踪误差 |
图选项 |
![]() |
图 3 欺骗干扰场景中的载波Doppler频移跟踪误差 |
图选项 |
![]() |
图 4 欺骗干扰场景中的载波相位跟踪误差 |
图选项 |
测试结果显示,在典型欺骗干扰场景中,标量跟踪环路对应的伪码相位跟踪误差ΔCn、载波Doppler频移跟踪误差Δfn及载波相位跟踪误差Δφn均在0附近波动,表明欺骗干扰未影响标量跟踪环路运行。矢量跟踪环路对应的跟踪误差均在常值附近波动,产生了常值跟踪偏差,说明欺骗干扰影响了矢量跟踪过程,实验结果与节2的理论分析结果一致。
此外,在信号载噪比相同的条件下,不同信号对应的跟踪误差均值存在明显差异。从式(34)、(38)和(41)可知,这主要与受卫星几何分布影响的矩阵HD1和HF2相关。测试结果也进一步证明了卫星几何分布对矢量跟踪环路中的跟踪误差均值存在影响。
4.2 欺骗干扰对跟踪性能的影响测试本节对矢量跟踪环路在无欺骗干扰和典型欺骗干扰场景中的相干积分结果进行对比。3组测试对应的跟踪环路设置如表 4所示,所有信号的载噪比均等于40 dB·Hz。在典型欺骗干扰场景中,PRN 12和PRN 28信号是欺骗信号,其欺骗码相位均等于1码片,欺骗Doppler频移均等于600 Hz。2种场景中PRN 2信号的相干积分结果IP, 1如图 5所示。
表 4 跟踪环路设置
测试 | 码环 | 载波环 |
1 | VDLL | PLL |
2 | DLL | VFLL |
3 | DLL | VFLL-A-PLL |
表选项
![]() |
图 5 无欺骗干扰和欺骗干扰场景中的相干积分结果 |
图选项 |
测试结果显示,在无欺骗干扰场景中,矢量跟踪环路是锁定的,根据IP, 1可以解调出信号的导航电文数据码;在典型欺骗干扰场景中,IP, 1呈现噪声特性,说明发生了环路失锁。相同的载噪比条件下,3种矢量跟踪环路在无欺骗干扰场景中能够跟踪信号,在欺骗干扰场景中则出现环路失锁,证明了欺骗干扰能够降低矢量跟踪环路的性能,引起环路失锁。实验结果与节3的分析结果一致。
4.3 矢量跟踪环路失锁条件测试本节针对仅1个欺骗信号的情况,测试了引起VDLL失锁的Cns临界值及引起VFLL和VFLL-A-PLL失锁的fns临界值,并将测试结果与由式(44)、(45)和(46)得到的分析结果进行比较。3组测试对应的跟踪环路设置与节4.2相同,所有信号的载噪比均为40 dB·Hz。图 6a中,当只有Snt为欺骗信号,其余为真实信号时,如果|Cns|小于对应临界值,VDLL能够跟踪信号;如果|Cns|大于或等于对应临界值,VDLL则会出现环路失锁。图 6b和6c也是类似。实验结果显示,测试结果与分析结果吻合,证明了所推导的矢量跟踪环路失锁条件表达式是正确的。
![]() |
图 6 3种矢量跟踪环路对应的的欺骗码相位或欺骗Doppler频移临界值 |
图选项 |
5 结论本文通过分析3种矢量跟踪环路在典型欺骗干扰场景中的稳定状态公式,证明了欺骗干扰能够通过破坏跟踪信号的一致性,使VDLL、VFLL和VFLL-A-PLL分别产生非零均值的伪码相位跟踪误差、载波Doppler频移跟踪误差和载波相位跟踪误差。跟踪误差非零均值会减小环路可容忍的热噪声标准差和动态应力误差,降低环路的跟踪性能,甚至引起环路失锁。本文还推导了跟踪误差均值和环路失锁条件,并通过一系列的仿真测试进行了验证。
非零均值的跟踪误差可以作为欺骗干扰的检测依据,降低了欺骗干扰的隐蔽性,反映出矢量跟踪环路具备抗欺骗干扰的潜力,这是标量跟踪环路所不具备的。本文为基于矢量跟踪结构的抗欺骗干扰技术提供了理论基础。
参考文献
[1] | LASHLEY M, BEVLY D M. Comparison of traditional tracking loops and vector based tracking loops for weak GPS signals [C]// Proceedings of the 2008 International Technical Meeting of The Institute of Navigation. San Diego, USA: Institute of Navigation, 2008: 310-316. |
[2] | WANG Q, CUI X W, LIU J, et al. Quantitative analysis of the performance of vector tracking algorithms[J]. High Technology Letters, 2017, 23(3): 238-244. |
[3] | LASHLEY M, BEVLY D M, HUNG J Y. Performance analysis of vector tracking algorithms for weak GPS signals in high dynamics[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 661-673. DOI:10.1109/JSTSP.2009.2023341 |
[4] | LI K, ZHAO J X, WANG X Y, et al. Federated ultra-tightly coupled GPS/INS integrated navigation system based on vector tracking for severe jamming environment[J]. IET Radar Sonar & Navigation, 2016, 10(6): 1030-1037. |
[5] | 刘婧, 崔晓伟, 陆明泉, 等. 标量和矢量架构下GNSS接收机多径抑制性能比较[J]. 清华大学学报(自然科学版), 2013, 53(7): 961-966. LIU J, CUI X W, LU M Q, et al. Multipath rejection performance comparison of GNSS receivers using scalar and vector architectures[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(7): 961-966. (in Chinese) |
[6] | 张瑞华. 基于阵列天线的GNSS矢量接收机抗干扰算法研究[D]. 天津: 中国民航大学, 2018. ZHANG R H. Interference mitigation in GNSS vector tracking receiver based on array antenna [D]. Tianjin: Civil Aviation University of China, 2018. (in Chinese) |
[7] | SCHMIDT D, RADKE K, CAMTEPE S, et al. A survey and analysis of the GNSS spoofing threat and countermeasures[J]. ACM Computing Surveys, 2016, 48(4): 1-31. |
[8] | DIETMAYER K, KUNZI F, GARZIA F, et al. Real time results of vector delay lock loop in a light urban scenario [C]// Proceedings of 2020 IEEE/ION Position, Location and Navigation Symposium. Portland, USA: IEEE, 2020: 1230-1236. |
[9] | LI H, YANG J S, CUI C. High dynamic GPS signals tracking based on vector frequency lock loop[J]. Journal of System Simulation, 2012, 24(4): 873-881. |
[10] | TANG Z R, TANG X M, LIN H L, et al. Improvement of the carrier phase based on vector frequency locked loop with the phase locked loop assisted [C]// Proceedings of the 4th International Conference on Mechanical, Control and Computer Engineering. Hohhot, China: IEEE, 2019: 34-38. |
[11] | TAO H Q, WU H L, LI H, et al. GNSS spoofing detection based on consistency check of velocities[J]. Chinese Journal of Electronics, 2019, 28(2): 437-444. DOI:10.1049/cje.2019.01.006 |
[12] | SUN C, CHEONG J W, DEMPSTER A G, et al. Moving variance-based signal quality monitoring method for spoofing detection[J]. GPS Solutions, 2018, 22(3): 1-13. |
[13] | CUNTZ M, KONOVALTSEV A, MEURER M. Concepts, development, and validation of multiantenna GNSS receivers for resilient navigation[J]. Proceedings of the IEEE, 2016, 104(6): 1288-1301. DOI:10.1109/JPROC.2016.2525764 |
[14] | KAPLAN E D, HEGARTY C. Understanding GPS: Principles and applications[M]. 2nd ed. Boston, USA: Artech House Publishers, 2006. |
[15] | SIMON M K. Probability distributions involving Gaussian random variables: A handbook for engineers and scientists[M]. Holland: Kluwer Academic Publishers, 2006. |
[16] | HUMPHREYS T E, LEDVINA B M, PSIAKI M L. Assessing the spoofing threat: Development of a portable GPS civilian spoofer [C]// Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation. Savannah, USA: Institute of Navigation, 2008: 2314-2325. |