删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

化学系肖海课题组在电化学二氧化碳还原反应的基础研究中取得进展

本站小编 Free考研考试/2023-11-25

清华新闻网6月13日电 近日,清华大学化学系肖海副教授课题组在电化学二氧化碳还原反应(eCO2RR)的基础研究中取得新进展,通过第一性原理计算模拟,发现在铜(Cu)金属表面上CO2活化的电子转移(ET)基元步骤的反应动力学随电势的变化存在类似Marcus理论所预测的“反转区”,即随着电势降低,ET的热力学获得了电化学驱动力,但是动力学却反而变糟。进一步的研究表明该“反转区”起源于泡利排斥(Pauli repulsion)效应的电势依赖性,这一理解为eCO2RR催化剂的理性设计提供了新的方向。
该团队采用巨正则密度泛函理论(GC-DFT)方法与隐式电解质模型相结合,首先发现在Cu表面上CO2活化的机理均具有电势依赖性:在常规工作电势下,CO2活化会以顺序电子-质子转移(SEPT)机理为主导,但在极负电势下会切换到耦合质子-电子转移(CPET)机理。而在SEPT机理中,CO2活化的ET步骤反应能垒存在“反转区”:当电势降低时, ET步骤的反应热力学虽然获得了电化学驱动力,但其反应能垒却会快速升高,这导致CO2活化在极负电势下不得不切换到CPET机理。
20230612-电化学二氧化碳还原反应中的“反转区”及其起源-化学系-无.jpg
图1.电化学二氧化碳还原反应中的“反转区”及其起源
研究进一步表明,这一“反转区”源于泡利排斥效应的电势依赖性(如图1所示):CO2的最高占据分子轨道(HOMO)与金属中费米面以下的占据态之间相互作用产生了泡利排斥,它主导了CO2物理吸附势能曲线的排斥区域;随着电势降低,泡利排斥迅速增大,这导致CO2物理吸附势能曲线快速抬升,因此使得物理吸附势能曲线和化学吸附势能曲线的交叉点,即过渡态能垒,会随着电势的降低而迅速升高,进而产生了“反转区”。
20230612-电化学二氧化碳还原反应催化剂的理性设计-化学系-无.jpg
图2.电化学二氧化碳还原反应催化剂的理性设计
基于以上理解,该团队指出了一系列优化eCO2RR电催化剂的设计方案,可以抑制泡利排斥对CO2活化动力学的不利影响(如图2所示),包括增加催化剂表面结构的粗糙度、引入配位结构相对灵活的活性位点、以及选择充电能力较弱的载体所构建的单原子催化剂。这为eCO2RR催化剂的理性设计指出一个新的方向和思路。
研究成果以“电势依赖的泡利排斥诱导产生电化学二氧化碳还原反应中的反转区”(Inverted Region in Electrochemical Reduction of CO2 Induced by Potential-dependent Pauli Repulsion)为题发表在《美国化学会志》(J. Am. Chem. Soc.)期刊。
文章第一作者为清华大学化学系2019级直博生刘乐雨,通讯作者为肖海副教授。该研究得到国家自然科学基金、清华大学“笃实专项”、国家重点研发计划以及清华大学自主科研计划的资助;清华大学高性能计算中心和清华学堂人才培养计划提供了计算资源的支持。
论文链接:
https://doi.org/10.1021/jacs.3c02447
供稿:化学系
题图设计:赵存存
编辑:李华山
审核:郭玲
2023年06月13日 13:39:48


相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19