删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

清华大学材料学院导师教师师资介绍简介-沈 洋

本站小编 Free考研考试/2020-04-16

国家基金获得者,“奖励计划”青年
每年招收1-2名博士生,欢迎报考。

展开更多>>




教育背景



工作履历



学术兼职



研究领域



奖励与荣誉



学术成果


1998/09-2002/08 清华大学材料科学与工程系,学士
2002/09-2007/01 清华大学材料科学与工程系,博士



2007/02-2009/08 美国加州大学圣巴巴拉分校材料系 (Materials Department, University of California, Santa Barbara)博士后
2009/08-2010/12 哈佛大学工程与应用科学学院 (School of Engineering and Applied Sciences, Harvard University)博士后
2011/01-2011/11 清华大学材料科学与工程系助理研究员
2011/12-2015/12 清华大学材料学院副研究员
2011/07-2016/12 清华大学材料学院(原材料系)党委研究生工作组组长
2016/01-2017/11 清华大学材料学院副教授
2017/12-至今 清华大学材料学院长聘教授



期刊审稿人:Nature Communications, Angewandte Chemie International Edition, Advanced Materials, PNAS, Advanced Functional Materials, Journal of Applied Physics, Journal of Materials Chemistry, Journal of the American Ceramics Society, Dalton Transactions, RSC Advances
Editor 《Applied Surface Science》
Associated Editor 《Science Bulletin》
2014/11-至今 清华大学校友总会青年学术交流协会副秘书长
2014/12-至今 中国材料研究学会青年工作委员会理事
2017/04-至今 中国物理学会电介质物理专业委员会委员
2017/11-至今 中国复合材料学会介电高分子复合材料与应用专业委员会常务副主任
2018/05-至今 亚洲电子陶瓷联盟(Asian Electroceramics Association)执委会委员

关注聚合物复合材料结构-性能关联,通过显微结构设计实现聚合物复合材料中电、磁、光等性能的集成与耦合,重点对其电子限域极化及离子输运等特性进行按需调控。已累计在包括Nature Communications,Adv. Mater., Adv. Funct/Energy. Mater., J. Am. Chem. Soc. Annual Review of Materials Research等在内的期刊发表SCI论文140余篇,他引6400余次,H-index 40。申请(授权)发明专利20项。作国际会议邀请报告20余次。曾作为项目负责人主持国家自然科学基金青年基金、面上项目、优秀青年基金、国家基金、国家重点研发计划等多个项目。

主要研究方向包括:
1.聚合物基复合电介质(用于超高功率脉冲功率电源等)
2.锂离子固体电解质及全固态锂离子电池的设计与制备

2016 国家科学基金
2016 教育部“奖励计划”青年
2015 中组部“”青年拔尖人才
2013 北京市科技新星计划
2012 国家自然科学基金委优秀青年科学基金
2011 清华大学“基础研究青年人才计划”
2009 全国百篇优秀博士学位论文
2005 清华大学学生社会工作特等奖学金
2004 清华大学“一二九”优秀辅导员奖



代表性论文
20 Z. H. Shen, J.J. Wang*, J.Y. Jiang, S. X. Huang, Y. H. Lin, C.-W. Nan, L.-Q. Chen*, and Y. Shen*, “Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics”, Nature Communications, 2019, doi.org/10.1038/s41467-019-09874-8
19 M.F. Guo, J.Y. Jiang, Z. H. Shen, Y. H. Lin, C.-W. Nan, and Y. Shen*, “Dielectric Nanocomposites Based on Ferroelectric Polymers towards High Energy Density: Enhanced Breakdown Strength and Improved Discharge Efficiency”, Materials Today, 2019 in press
18 X. Huang, X. Zhang, G. K. Ren, J. Y. Jiang, Z. K. Dan, Q. H. Zhang, X. Zhang, C.-W. Nan, and Y. Shen*, “Non-Intuitive Concomitant Enhancement of Dielectric Permittivity, Breakdown Strength and Energy Density in Percolative Polymer Nanocomposites by Trace Ag Nanodots”, J. Mater. Chem. A, 2019 in press
17 J.Y. Jiang, Z.H. Shen, X.K. Cai, J.F. Qian, Z.K. Dan, Y.H. Lin, B.L. Liu, C.-W. Nan, L.Q. Chen, and Y. Shen*, “Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density”, Adv. Energy. Mater. 2019, **
16 M.F. Guo, J.Y. Jiang, J.F. Qian, C. Liu, J. Ma, C.-W. Nan, and Y. Shen*, “Flexible Robust and High-Density FeRAM from Array of Organic Ferroelectric Nano-Lamellae by Self-Assembly”, Adv. Sci. 2019, **
15 J.F. Qian, R.C. Peng, Z.H. Shen, J.Y. Jiang, F. Xue, T.N. Yang, L.Q. Chen, Y. Shen*, “Interfacial Coupling Boosts Giant Electrocaloric Effects in Relaxor Polymer Nanocomposites: In Situ Characterization and Phase-Field Simulation”, Adv. Mater. 2018, **
14 Z. H. Shen, J.J. Wang*, J.Y. Jiang, Y. H. Lin, C.-W. Nan, L.-Q. Chen*, Y. Shen*, “Phase-Field Model of Electrothermal Breakdown in Flexible High-Temperature Nanocomposites under Extreme Conditions”, Adv. Energy Mater. 2018, **
13 X. Zhang, J. Y. Jiang, Z. H. Shen, Z. K. Dan, M. Li, Y. H. Lin, L. Q. Chen, C-W Nan, Y. Shen*, “Polymer Nanocomposites with Ultrahigh Energy Density and High Discharge Efficiency by Modulating Their Nanostructures in Three Dimensions”, Adv. Mater. 2018, **
12 Z. H. Shen, J.J. Wang*, Y. H. Lin, C.-W. Nan, L.-Q. Chen, Y. Shen*, “High-Throughput Phase-Field Design of High-Energy-Density Polymer Nanocomposites”, Adv. Mater. 2018, **
11 X. Zhang, T. Liu, S. F. Zhang, X. Huang, B. Q. Xu, Y. H. Lin, L. L. Li, C.W. Nan*, Y. Shen*, “Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes”, J. Am. Chem. Soc. 2017, 139, 13779
10 J Jiang, X Zhang, Z Dan, J Ma, Y Lin, M Li, CW Nan, Y Shen*, “Tuning Phase Composition of Polymer Nanocomposites toward High Energy Density and High Discharge Efficiency by Nonequilibrium Processing”, ACS Applied Material & Interfaces, 2017, 9, 29717
09 Y. Shen*,X. Zhang, M. Li, Y. H. Lin, C-W. Nan, “Polymer Nanocomposite Dielectrics for Electrical Energy Storage (invited review)”, National Science Review, 2017, 4, 23
08 X. Zhang, Y. Shen*, B. Xu, Q. H. Zhang, L. Gu, J. Y. Jiang, J. Ma, Y. H. Lin, C-W Nan*, “Giant Energy Density and Improved Discharge Efficiency of Solution-Processed Polymer Nanocomposites for Dielectric Energy Storage”, Adv. Mater. 2016, 28, 2055
07 Y. Shen*, Y. H. Hu, W. W. Chen, J. J. Wang, Y. H. Guan, J. W. Du, J. Ma, M. Li, Y. H. Lin, L. Q. Chen, C-W. Nan, “Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3nanofiber/polymer nanocomposites”, Nano Energy, 2015, 18, 176
06 Y. Shen*, Y. H. Lin, and Q. M. Zhang, “Polymer nanocomposites with high energy storage densities” (invited review), MRS Bulletin, 2015, 40, 753
05 Q. Chen, Y. Shen, S. H. Zhang, Q. M. Zhang*, “Polymer-Based Dielectrics with High Energy Storage Density” (invited review), Annual Review of Material Research, 2015, 45, 433
04 X. Zhang, Y. Shen*, Q. H. Zhang, L. Gu, Y.H. Hu, J. W. Du, Y. H. Lin. C-W. Nan*, “Ultrahigh Energy Density of Polymer Nanocomposites Containing TiO2@BaTiO3 Nanofibers by Atomic Scale Interface-Engineering”, Adv. Mater. 2015, 27, 819
03 X. Zhang, W.W. Chen, J. J. Wang, Y. Shen*, L. Gu, Y. H. Lin, C-W. Nan*, “Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers”, Nanoscale, 2014, 6, 6701
02 P.H. Hu, Y. Shen*, Y.H. Guan, X. H. Zhang, Y. H. Lin, Q. M. Zhang*, C-W Nan “Topological-Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density”, Adv. Funct. Mater.2014, 24, 3172
01 H.Y. Liu, Y. Shen, Y. Song, C-W. Nan, Y.H. Lin* and X.P. Yang, “Carbon-nanotube array/polymer core-shell structured composites with high dielectric permittivity, low dielectric loss and large energy density”, Adv. Mater. 2011, 23,5104








相关话题/清华大学 材料