基于杂化材料的柔性传感器
近年来,柔性传感器的发展受到了科研人员和工业界的广泛关注。因为采用的传感器相比,柔性传感器不需要使用硬质的塑料和金属部件,可以和非平面表面(复杂形状的物体或生物表面)交互,极大地拓宽了传感器的性能和应用范围。但是,单一材料的固有特性有时候会限制柔性传感器的进一步发展。为了能够更好地展示柔性传感器的应用优势,越来越多的研究人员将他们的注意力转移到复合杂化材料上。
在最新出版的《半导体学报》第4期News and Views栏目中,中国科学院半导体研究所魏钟鸣研究员和昆士兰科技大学的Prashant Sonar教授、Dongchen Qi博士等发表题为“Flexible sensors based on hybrid materials”的评论文章,简述了基于杂化材料的不同功能传感器最近发展情况。评述还分析了当前研究面临的挑战和不足,也对杂化材料在柔性传感器应用方面的发展前景进行了展望。
Abstract
With the rapid development of mobile Internet and intelligent devices, flexible electronic technology has attracted wide attention driven by the huge demand of the market. As one type of flexible electronic devices, flexible sensors have attracted great interest because of their promising prospects in artificial intelligence, medical health, and environmental protection. In recent years, flexible sensors with high sensitivity, selectivity, good deformability, reliable stability, and portability are urgently needed to meet the developments of artificial skin, human-computer interaction, point of care diagnostics and wearable electronic devices.
The selection of materials is critical for the fabrication of sensors. Excellent material properties contribute to flexible sensors with high sensitivity, wide detection, or superior durability. In fact, various high-quality materials, including metals, inorganic semiconductors and conjugated organic semiconductors, are some the most widely used and important ones. Compared with single-component materials limited by their inherent properties, researchers find that the hybrid composite of organic and inorganic materials combination can enhance the final performance of sensors, which brings synergetic advantages from the set of individual physicochemical properties combining the excellent flexibility of organic polymers with the structural support and good conductivity of inorganic semiconductors. What’s more, the function of the materials can be “cut” and “assembled” to meet the demands of people by adjusting the proportion of the organic phase and the inorganic phase components in hybrid materials.
In recent years, various flexible sensors based on hybrid materials have been fabricated to detect different signal stimuli such as pressure, deformation, humidity, light, heat, gas, current. For example, Shen’s research group reported a strain sensor based on the nanostructures of poly (vinylidene fluoride–trifluoroethylene) (PVDF-TrFE) fibers/ZnO nanowires composites[1]. The as-fabricated device can also function properly when transferred to the fingers to detect muscle movements such as finger bending or straightening. Polydimethylsiloxane/Ag-nanowires composite dielectrics can be used to fabricate a flexible, transparent and ultra-sensitive capacitive pressure sensor[2]. Capacitive sensors generally exhibit better linearity, less hysteresis and better repeatability than resistive sensors, but resistive sensors are generally more sensitive[3]. Temperature sensors obtained via combining the pyroelectric polymer and BrTiO3 nanomaterial have been demonstrated as an accurate device with standard deviation of 0.006–0.012 Kelvin[4]. TiO2-nanoparticles/polypyrrole and TiO2-nanoparticles/polypyrrole/poly-[3-(methacrylamino) propy] trimethyl ammonium chloride composite thin films formed by the in-situ photopolymerization can be utilized to fabricate flexible resistive-type humidity sensors, where different centration of water vapor in air leads to a change of the material conductance[5]. For optical sensing, organic–inorganic poly(3-hexylthiophene)/CdSe-nanowire heterojunction photodetectors have exhibited good photoelectric performance and potential application prospect as image sensors[6]. In addition, the performance of sensing elements is largely determined by the structural design of a sensor. For example, flexible pressure sensors based on a Ti3C2/natural-microcapsule-biocomposite film mimicking the skin structure have excellent flexibility, mechanical deformability, and the ability to detect weak physiological signals[7]. Recently, gas sensors composed of ultrathin single-walled carbon nanotubes and chitosan with reference to the three-dimensional biomimetic templating of a structurally hierarchical butterfly wing enable the highly selective detection of diabetes-related volatile organic compounds[8]. With the further development of interdisciplinary research, more flexible hybrid materials with good electrical properties will be developed. Emerging organic-inorganic hybrid perovskite materials, such as CH3NH3PbI3 (MAPbI3) and MAPbBr3, have exhibited highly attractive photoelectric characteristics. These materials are promising candidates for high-performance flexible image detectors[9]. Electroluminescent sensors composed of hybrid materials also have greatly competitive advantages in electronic skin applications through visualizing accurate stimulus distribution[10], the reliability of the pressure map by sensors can be proved (Fig. 1).
Figure 1. (Color online) Schematic illustration of the photonic skin. Reproduced with permission[10] . Copyright 2020, Nature Publishing Group.
At present, organic/inorganic hybrid sensors remain in the research & development stage. The physicochemical mechanism of hybrid materials needs to be further studied through optimizing hybrid materials or designing hybrid structures. Moreover, most sensor systems still require external power sources, which limits the use of sensors in fields such as flexible wearable electronics and medical health. Self-powered materials based on piezoelectric, frictional or thermoelectric effects can be envisioned. We believe that the unique advantages provided by hybrid materials, coupled with innovations in sensor device architectures, can greatly accelerate the development of flexible sensors in the next few years.
References
[1]Shuai C, Zheng L, Di C, et al. Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. Sci China Mater, 2016, 59(3), 173
[2]Shi R, Lou Z, Chen S, et al. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci China Mater, 2018, 61(12), 1587
[3]Shintake J, Piskarev E, Jeong S H, et al. Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors. Adv Mater Technol, 2017, 1700284
[4]Tien N T, Jeon S, Kim D I, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater, 2014, 26(5), 796
[5]Su P G, Wang C P. Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials. Sens Actuators B, 2008, 129(2), 538
[6]Wang X, Song W, Liu B, et al. High-performance organic–inorganic hybrid photodetectors based on P3HT:CdSe nanowire heterojunctions on rigid and flexible substrates. Adv Funct Mater, 2013, 23(9), 1202
[7]Wang K, Lou Z, Wang L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 2019, 13(8), 9139
[8]Wang L, Jackman J A, Park J H, et al. A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. J Mater Chem B, 2017, 5(22), 4019
[9]Gu L, Tavakoli M M, Zhang D, et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv Mater, 2016, 28(44), 9713
[10]Lee B, Oh J Y, Cho H, et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat Commun, 2020, 11(1), 663
作者简介
魏钟鸣,中国科学院半导体研究所半导体超晶格国家重点实验室研究员,中国科学院大学岗位教授。
曾任丹麦哥本哈根大学助理教授,2015年入职中国科学院半导体研究所,主要研究方向是低维半导体材料与器件。
点击阅读魏钟鸣研究员文章:
Flexible sensors based on hybrid materials
Zhihui Ren, Dongchen Qi, Prashant Sonar, Zhongming Wei
J. Semicond. 2020, 41(4): 040402
doi: 10.1088/1674-4926/41/4/040402
Full text
“柔性材料与结构”专刊
《半导体学报》组织了一期“柔性材料与结构”专刊,并邀请复旦大学梅永丰教授、美国加州理工学院高伟助理教授、美国东北大学方辉助理教授、电子科技大学林媛教授和中科院半导体研究所沈国震研究员共同担任特约编辑。该专刊已于2020年第4期正式出版并可在线阅读,欢迎关注。
专刊详情请见:半导体学报2020年第4期——柔性材料与结构专刊
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
专家视点|魏钟鸣研究员:基于杂化材料的柔性传感器
本站小编 Free考研/2020-05-25
相关话题/传感器 材料
宁波材料所在柔性白光发射显示材料方面取得新进展
柔性白光发射材料在柔性照明、柔性显示和生物传感器等方面具有重要应用前景。现有的制备策略主要是在蓝色背光源上涂覆黄色荧光粉或有机发光小分子凝胶,通过蓝光和黄光的叠加获得白光。然而无机材料通常又脆又硬,荧光粉和基底之间的结合强度也不足,导致柔性器件的延展性和柔韧性大大受限;而有机发光小分子凝胶涂层的机械 ...中科院半导体研究所 本站小编 Free考研 2020-05-25钙钛矿材料在光解水中的应用
光解水是解决当前能源和环境问题的最理想方式之一,然而成本和效率问题极大的阻碍了其产业化进程。在已开发的光催化体系中,基于钙钛矿材料(如SrTiO3, BiFeO3,BaTiO3等)的光催化体系越来越受到人们的关注,主要由于钙钛矿材料具有高稳定性、高催化活性、优越的结构灵活性和简易性(图1),从而可以 ...中科院半导体研究所 本站小编 Free考研 2020-05-25微电子所在二维材料异质结构光电器件研究中取得进展
半导体光伏结构因其能够有效地将太阳能转化为电能,被认为是实现清洁能源的重要途径。然而早在1961年,美国科学家肖克莱、德国科学家凯赛尔便提出光伏单元的效率由于难以避免的损耗而存在理论极限。其中,由于光子吸收和再辐射导致的自发辐射损耗最为关键,这种损耗正比于自发辐射立体角和太阳光立体角的比值。太阳光的 ...中科院半导体研究所 本站小编 Free考研 2020-05-25深圳先进院等研发出新型低成本环保钠电正极材料
近日,中国科学院深圳先进技术研究院功能薄膜材料研究中心研究员唐永炳及其团队成员联合泰国国立同步辐射光源研究所成功研发出一种新型钠离子电池正极材料。该正极材料成本低廉,并且环境友好,此项工作对开发低成本环保型电极材料及储能器件具有重要借鉴意义。相关研究成果A low-cost and environm ...中科院半导体研究所 本站小编 Free考研 2020-05-25福建物构所自驱动光电探测铁电晶体材料研究获新进展
新一代光电探测器件中,外置电源一直是制约系统性能与器件小型化的关键瓶颈。因此,无需电源模块的自驱动光电探测在下一代便携式、节能光电器件中展现出广阔的应用前景。相比于传统的p-n结/异质结半导体材料,铁电材料提供了一种简单有效实现自驱动光电探测的方式。光辐射下,单相铁电材料内部产生光生电子空穴对,光生 ...中科院半导体研究所 本站小编 Free考研 2020-05-25新型二维原子晶体材料单层二硒化钒的“一维图案化” 及其功能化研究获进展
二维原子晶体材料的功能化对实现其在光电、催化、新能源以及生物医学等领域中的应用具有重要意义。在实现二维材料功能化方面,结构图案化调控是其中一个重要手段。之前,人们利用电子/离子束刻蚀、元素掺杂等手段实现了二维材料的图案化。图案化的二维材料则呈现出了许多新的物理性质,例如“纳米网状”石墨烯的半导体特性 ...中科院半导体研究所 本站小编 Free考研 2020-05-25Advanced Materials Technologies:基于光补偿有机晶体管电路的高信噪比化学传感器
有机半导体材料具有质轻、柔性和化学敏感等优点,基于有机半导体的电子传感器在用于探测环境分析物,尤其是气体分析物时,具有响应快速、便携易控等特点。但是有机半导体的化学敏感性具有两面性,一方面使得它易于和待分析物发生反应,能迅速的反映到有机传感器电学性能的变化;另一方面却使得它容易受到环境中其它非目标分 ...中科院半导体研究所 本站小编 Free考研 2020-05-25光调控分子材料电子结构以及多功能耦合研究进展
光响应智能材料可以在不同波长的光照射下,在两个或多个状态之间可逆切换,导致材料颜色、形状、磁性、电性等物理化学的性质变化,有望应用于分子开关、传感及高密度存储器件等领域。目前,光响应分子材料的研究主要集中在罗吡喃和偶氮苯类衍生物,通常涉及分子结构层次上的化学键异构或基团转动,只能在溶液中进行高效的转 ...中科院半导体研究所 本站小编 Free考研 2020-05-25国家纳米中心二维材料力学性能研究取得新进展
2019年9月13日,Phys. Rev. Lett. 《物理评论快报》作为封面图片(PRL cover page image)和主编推荐论文(Editors’ Suggestion)发表了国家纳米科学中心张忠、刘璐琪研究员在二维材料力学性能研究领域的最新工作,题为“多层范德华材料的弯曲”(Bend ...中科院半导体研究所 本站小编 Free考研 2020-05-25福建物构所中远红外非线性光学晶体材料研究获系列进展
中远红外二阶非线性光学(MFIR-NLO)晶体材料在诸多领域有着重要的应用。目前商业化的MFIR-NLO晶体材料(例如,AgGaQ2(Q=S,Se)和ZnGeP2等)存在多方面的性能缺陷,限制了它们的应用范围。因此,设计和合成具有性能优良的新型MFIR-NLO晶体材料仍是该领域的研究热点和难点。中国 ...中科院半导体研究所 本站小编 Free考研 2020-05-25