材料对于推动生产力发展和社会进步起着举足轻重的作用。关键材料的研发周期更是直接决定了相关领域的发展进程。随着科技发展,对材料的功能和性能要求越来越高。传统材料研发手段也越来越难以满足现代社会生产发展的需求。以高温超导材料为例,超导转变温度高的材料往往组分结构十分复杂。随着组分增多,获得精确的组分依赖的相图的工作量呈几何级数增长。另外,采用传统的实验手段很难精确合成并重复获得到某个特定的组分,而这往往是研究量子相变,破解高温超导机理的关键。
材料基因组技术的出现为快速构建精确的材料相图,缩短材料的研发周期带来了希望。组合薄膜制备技术作为材料基因组核心技术之一经历了三个发展阶段,即共磁控溅射技术,阵列掩膜板技术和组合激光分子束外延技术。目前,组合薄膜生长往往采用往复平行位移掩膜板的方式,这样不可避免造成累积误差,直接影响到薄膜制备过程中组分控制的精度。此外线性掩膜板反复变向及加减速操作也会加速机械部分磨损,降低系统稳定性。另一方面,目前对组合薄膜高通量快速表征技术也存在不足,很多传统方法无法直接用于组合薄膜表征。以扫描隧道显微镜(STM)为例,其对样品表面清洁度具有很高的要求,通常需要原位解理或制备样品;此外,有限的样品移动范围和不具备精确定位功能限制了STM在组合薄膜表征上的应用:大多数商业化STM样品移动范围一般仅为数毫米且不具备定位功能。对于连续组分薄膜性质的研究来说,实际的测量位置与样品组分是一一对应的,失去了位置坐标就失去了组分的信息。因此,发展更加精确的高通量薄膜制备和原位表征手段十分必要,并对包括超导材料在内的多个前沿研究领域具有重要的意义。
中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发;超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。近些年来,两个团队密切合作、联合攻关,共同指导SC2组博士生何格(目前在德国做洪堡****)、魏忠旭、冯中沛等同学成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点:1)采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性;2)特殊设计的STM扫描头能够实现大范围XY移动(>10 mm)和高精度定位(定位精度优于 1 μm);3)完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。
该研发团队对系统进行了反复地设计优化和改进(研发历时4年多,设计版本多达50多个),并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。目前,该系统已用于研究高温超导机理问题和新型超导材料探索。
作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。
该系统的详细介绍发表在近期的《科学仪器评论》杂志上【Review of Scientific Instruments 91, 013904 (2020); doi: 10.1063/1.5119686】。该工作得到了中国科学院科研装备研制项目、中国科学院关键技术研发团队项目、国家自然科学基金重大仪器专项和中科院引进杰出技术人才项目等的支持。
图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片
图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b)
图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图
附件列表:
下载附件>> Review of Scientific Instruments 91, 013904 (2020).pdf
(来源:中国科学院物理研究所)
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
新一代高通量薄膜制备及原位表征技术研发进展
本站小编 Free考研/2020-05-25
相关话题/材料 系统
宁波材料所在柔性白光发射显示材料方面取得新进展
柔性白光发射材料在柔性照明、柔性显示和生物传感器等方面具有重要应用前景。现有的制备策略主要是在蓝色背光源上涂覆黄色荧光粉或有机发光小分子凝胶,通过蓝光和黄光的叠加获得白光。然而无机材料通常又脆又硬,荧光粉和基底之间的结合强度也不足,导致柔性器件的延展性和柔韧性大大受限;而有机发光小分子凝胶涂层的机械 ...中科院半导体研究所 本站小编 Free考研 2020-05-25钙钛矿材料在光解水中的应用
光解水是解决当前能源和环境问题的最理想方式之一,然而成本和效率问题极大的阻碍了其产业化进程。在已开发的光催化体系中,基于钙钛矿材料(如SrTiO3, BiFeO3,BaTiO3等)的光催化体系越来越受到人们的关注,主要由于钙钛矿材料具有高稳定性、高催化活性、优越的结构灵活性和简易性(图1),从而可以 ...中科院半导体研究所 本站小编 Free考研 2020-05-25微电子所在二维材料异质结构光电器件研究中取得进展
半导体光伏结构因其能够有效地将太阳能转化为电能,被认为是实现清洁能源的重要途径。然而早在1961年,美国科学家肖克莱、德国科学家凯赛尔便提出光伏单元的效率由于难以避免的损耗而存在理论极限。其中,由于光子吸收和再辐射导致的自发辐射损耗最为关键,这种损耗正比于自发辐射立体角和太阳光立体角的比值。太阳光的 ...中科院半导体研究所 本站小编 Free考研 2020-05-25深圳先进院等研发出新型低成本环保钠电正极材料
近日,中国科学院深圳先进技术研究院功能薄膜材料研究中心研究员唐永炳及其团队成员联合泰国国立同步辐射光源研究所成功研发出一种新型钠离子电池正极材料。该正极材料成本低廉,并且环境友好,此项工作对开发低成本环保型电极材料及储能器件具有重要借鉴意义。相关研究成果A low-cost and environm ...中科院半导体研究所 本站小编 Free考研 2020-05-25上海微系统所在超导纳米线单光子探测器的性能调控及机理研究方面取得重要进展
近日,中科院上海微系统所的尤立星团队与欧欣团队展开合作,将“万能离子刀”技术应用于超导纳米线单光子探测器(SNSPD)的性能调控和机理研究中。研究发现,使用氦离子(He+)辐照诱导的可控缺陷能够调控SNSPD的物理性能,进而实现对器件探测性能的增强。该技术还可以直接比较辐照引起的超导器件性能变化,有 ...中科院半导体研究所 本站小编 Free考研 2020-05-25福建物构所自驱动光电探测铁电晶体材料研究获新进展
新一代光电探测器件中,外置电源一直是制约系统性能与器件小型化的关键瓶颈。因此,无需电源模块的自驱动光电探测在下一代便携式、节能光电器件中展现出广阔的应用前景。相比于传统的p-n结/异质结半导体材料,铁电材料提供了一种简单有效实现自驱动光电探测的方式。光辐射下,单相铁电材料内部产生光生电子空穴对,光生 ...中科院半导体研究所 本站小编 Free考研 2020-05-25沈阳自动化所开发激光冲击强化声学在线检测系统
为解决激光冲击强化现有检测方法存在的问题,促进该技术的大规模工业化生产,中国科学院沈阳自动化研究所开发了一套激光冲击强化声学在线检测系统,相关成果发表在Optik - International Journal for Light and Electron Optics上。激光冲击强化是一种利用激光 ...中科院半导体研究所 本站小编 Free考研 2020-05-25新型二维原子晶体材料单层二硒化钒的“一维图案化” 及其功能化研究获进展
二维原子晶体材料的功能化对实现其在光电、催化、新能源以及生物医学等领域中的应用具有重要意义。在实现二维材料功能化方面,结构图案化调控是其中一个重要手段。之前,人们利用电子/离子束刻蚀、元素掺杂等手段实现了二维材料的图案化。图案化的二维材料则呈现出了许多新的物理性质,例如“纳米网状”石墨烯的半导体特性 ...中科院半导体研究所 本站小编 Free考研 2020-05-25双薄膜腔光力系统
腔光力学在精密测量、微纳光子学、量子信息和量子计算等领域具有广泛的应用前景,同时还提供了一条在宏观尺度上验证量子力学基本问题的崭新道路,成为深入探索微观事物本质以及联系宏观世界的理想研究平台,近年来引起了人们广泛的兴趣和关注。腔体光学作为一个新兴领域,到目前为止,绝大部分实验研究都聚焦于最基本的腔光 ...中科院半导体研究所 本站小编 Free考研 2020-05-25光调控分子材料电子结构以及多功能耦合研究进展
光响应智能材料可以在不同波长的光照射下,在两个或多个状态之间可逆切换,导致材料颜色、形状、磁性、电性等物理化学的性质变化,有望应用于分子开关、传感及高密度存储器件等领域。目前,光响应分子材料的研究主要集中在罗吡喃和偶氮苯类衍生物,通常涉及分子结构层次上的化学键异构或基团转动,只能在溶液中进行高效的转 ...中科院半导体研究所 本站小编 Free考研 2020-05-25